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ABSTRACT

A ggregate produ ction  p lan n in g  (APP) seeks to determ in e produ ction  levels fo r  a  com pany's produ ct fa m ilies  over a  12 to 18-m onth  
plan n in g  horizon . However, the coverage o f  m ethods av a ilab le  to create fea sib le , low -cost aggregate produ ction  p lan s in m any  
produ ction  an d  operation s m an agem en t textbooks does n ot begin  to captu re the com plexity o f  aggregate produ ction  planning, 
especially  its m u ltiperiod, m u ltiprodu ct environm ent. M ore sop h isticated  solu tion  procedures such as lin ear program m ing receive 
little o r no coverage a t  a ll. This p ap er w ill exp lain  how  to m odel d ifferen t APP environm ents using lin ear program m ing. E xam ples o f  
each  environm ent are included.
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INTRODUCTION

Aggregate production planning (APP) is a medium-range 
component of a company's overall production planning 
system. At this planning stage, production levels for product 
families are determined in order to meet a given demand 
pattern over the planning horizon (Cox & Stone, 2010).

The minimum cost aggregate production plan may result from 
any one of three “pure” strategies or a mixed-strategy 
consisting of a combination of any two, or all three pure 
strategies Heizer & Render, 2011; Stevenson, 2009). The pure 
strategies are:

(i) Use inventory and stockouts as a buffer to separate 
production from demand.

(ii) Change the utilization of the workforce through 
overtime and undertime to match production with 
demand.

(iii) Change the size of the workforce through hiring and 
layoffs to match production with demand.

For students in a first course in operations management, 
aggregate production planning can be an excellent 
introduction to the challenges involved in developing a 
feasible, low-cost production plan.

However, the coverage of methods available to create feasible, 
low -cost production plans in m any production and 
operations management textbooks does not begin to capture 
the complexity of aggregate production planning, especially 
its m u ltip erio d , m u ltip ro d u ct en v iro n m en t. M ore 
so p h is tica te d  so lu tio n  p ro ced u res su ch  as lin ea r 
programming receive little or no coverage at all.

Heizer and Render (2011) and Stevenson (2009) discuss why 
linear programming and other mathematical modeling 
techniques are not widely used in industry for activities such 
as aggregate production planning. According to them, 
mathematical modeling techniques tend not to be accepted 
by managers as decision making tools because:

(i) Mathematical models are too unrealistic. Managers 
complain that some modeling assumptions, such as 
linear costs or a deterministic environment, do not 
capture the com plexity of aggregate production 
planning and managers will not use them if they are not 
realistic.

(ii) Mathematical solution techniques are too complicated. 
Managers do not understand how the techniques work 
and managers will not use them if they do not 
understand them.

There are actually two competing model criteria here: the 
model's level of realism of a planning activity and the level of 
managerial understanding of how the model works.

Models are abstractions of reality. In model building, there is a 
trade-off between realism and abstraction but also a trade-off 
between complexity and simplicity. If the reality of a decision 
is complex and difficult to understand, a model would be 
constructed which gives up some of that realism in return for a 
better understanding of the decision to be made.

A nother approach would be to increase m anagers'

understanding of m athem atical modeling techniques, 
specifically how to model various decision environments, so 
that through experience, more realistic planning models can 
be constructed. That is our purpose in this paper.

This paper will explain, within the context of the three pure 
strategies, howto model different APP environments using the 
mathematical modeling technique of linear programming. 
The modeled decision problems can then be solved by linear 
programming software such as UNDO (Schrage, 1997) or a 
spreadsheet application such as Excel with the Solver add-on .

The next section of the paper reviews the relevant literature. In 
Section 3, the basic concepts, assumptions, and definitions 
used throughout the rest of the paper are introduced and a 
simple production planning problem is created and studied. 
Section 4 looks more closely at the linkage between inventory 
and/or stockouts between neighboring time-periods. The 
discussion will illustrate a variety of options available under 
Pure Strategy I.

Pure Strategies I and II both involve changing production 
capacity and are discussed together in Section 5. The 
formulation and solution of a multiperiod-multiproduct APP 
problem appears in Section 6. Section 7 concludes the paper 
with discussion and a suggestion for future research.

EVIEWOF RELEVANT LITERATURE

Aggregate production planning is an approach 
to plan for capacity to meet the medium-term 
demand forecast over a 12 to 18 month period. 
Aggregate production planning has been a 

subject of research since the 1950s. Holt, Modigliani and 
Simon (1955) proposed a Linear Decision Rule (LDR) 
approach for finding an optimal production and employment 
schedule, given quadratic cost functions for inventory, labor 
and overtime costs. In another early work by Bowman (1956), 
a specialized linear optimization technique called the 
Transportation Method was proposed to find the cost 
minimization solution to production planning. A more 
generalized approach using Linear Programming (LP) to find 
an optimal mix of production and employee levels was first 
proposed by Hanssmann and Hess (1960). The LP approach 
was extended further by Goodman (1974) to incorporate 
multiple objective functions by using Goal Programming. 
Linear programming continues to be a useful tool in modeling 
and solving large-scale optimization problems, including 
those involving production planning and scheduling (see for 
example, Sang-jin and Logendran (1992), Wang and Liang 
(2005),andWu (2010).

Others have proposed methods for finding satisfactory, if not 
optimal, aggregate production planning solutions. Interested 
readers should see, for example, Bowman (1963), Jones (1967), 
Taubert (1968) and Lee andKhumawala (1974).

Saad (1982) surveyed and classified then existing aggregate 
production planning models into two broad categories: 
descriptive and normative models. Based on Saad's work, 
Sakalli, (2010) et al. classified traditional models of aggregate 
p ro d u ction  p lann in g  in to  six ca teg o ries: 1) lin ear 
programming, 2) linear decision rule (LDR), 3) transportation, 
4) management coefficient approach, 5) search decision rule 
(SDR), and 6) parametric production planning models. Some
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of these models have made their way into modern operations 
management textbooks.

We begin by introducing the following notation (other 
notation will be introduced as needed throughout the article).

Six current textbooks in production and operations 
management were reviewed for their coverage of aggregate 
production planning. All textbooks mentioned the three pure 
strategies in some form and also the concept of a mixed (or 
hybrid) strategy.

Table : Textbook Procedures for Generating an Aggregate 
Production Plan

Author Trial-and- 
Error Procedures

Transportation
Model

Heizer and Render (2011) X X

Stevenson (2009) X X

Krajewski, et. al.(2010) X X

Jacobs and Chase (2010) X X

Reid and Sanders (2010) X

Swink, et. al.(2011) X

As Table 1 shows, all the textbooks introduced some type of 
trial-and-error solution procedure. These procedures consist 
of comparing production and demand levels using period-by- 
period or cumulative graphs and using spreadsheets to cost 
out various solutions—usually the three pure strategies. 
However, both Jacobs and Chase and Reid and Sanders create 
and cost out a mixed strategy as well.

As for methods that will find the minimum cost aggregate 
production plan, only Stevenson (2009) and Jacobs and Chase 
(2010) mention linear programming as a possible candidate. 
No textbook gives an example using linear programming to 
model and solve an APP problem.

A modification of the transportation model approach 
attributed to Bowman (1956) is the only procedure presented 
that would generate a minimum cost aggregate production 
plan. To use the transportation model, demand can only be 
met by using inventory/backorders (Pure Strategy I) and 
regulartime, overtime, and subcontracting (Pure Strategy II).

The textbook examples are typically 3 or 4 time periods in 
length for a single product. Options for meeting demand in a 
time period consist of regulartime and overtime production 
and subcontracting production to another company. All 
examples allow the holding of inventory from one period to the 
next. Only Stevenson introduces the possibility of 
backordering. Stevenson (2009) is the only author that also 
suggests that the model can be extended to multiple products.

HE BASICS

Every linear program is designed to optimize 
an objective function subject to constraints 
that define the set of feasible solutions. In the 
case of aggregate production planning, the 

goal is to find the plan that minimizes the total relevant cost 
function. The constraints can be broadly defined as belonging 
to one of three groups:

1. Inventory "Balancing" Constraints,
2. Simple Upper Bounds,
3. Production Capacity Variation Constraints.

N  =  total number of products (or product families)
T  — number of periods in the planning horizon 
Pu =  number of units of product i produced in period t 
la  =  ending inventory of product i in period t
P ~ a  =  maximum allowable production level of product i 

in period t
du =  demand for product i in period t 
a  — per unit production cost of product i
hi — inventory holding cost per unit per period of 

product i
Our first example is to determine the number of units of each 
product i to produce in each period t. There is an upper limit 
on production in each period. The objective is to minimize 
total production costs plus total inventory holding costs over 
the planning horizon. The problem can be stated in linear 
programming form as shown below. The Objective Function 
(1), to be minimized, and the Constraint Set (2) - (5) will be 
referred to as the Basic Model. The solution will consist of the 
values of the variables (production and inventory levels) that 
satisfy the Constraint Set and result in the minimum value of 
the Objective Function.

N  T

Minimize z -  Y L  (ClPu + h tI u) (1)
i=l t=1

subject to : M +P U— Iit -  dit for all i, t (2)

Pit< P r  for all i, t (3)

I i0 =  0 for all i (4)

Pit, I it > 0 for all i, t (5)
An assumption we will make is that per unit production costs 
are relatively constant over time. This results in E ^ E ^ c , P„ 
being a constant. Another assumption is that the inventory 
holding cost per unit per period is constant over time.

The rather simple nature of this model comes about by the fact 
that we only need to minimize total holding costs. Real 
production planning problems are usually more complex. 
Before we get to these more complex (and realistic) models, 
let's look at this current model more closely. Constraints (2) 
are our inventory balancing constraints. They express the 
accountant's inventory balance equation, namely that 
beginning inventory (which is ending inventory from the 
previous period) plus production minus ending inventory 
equals demand (goods sold). This is the basic constraint 
which can be modified to give all the other kinds of inventory 
balancing constraints. The upper bounding of production is 
accomplished by Constraints (3). These constraints are called 
simple upper bound (SUB) constraints. A typical convention 
is to assume that the inventory levels at the beginning of the 
problem are zero (Constraints (4)). If not, these inventory 
levels should be explicitly stated as constraints. Finally, the 
nonnegativity conditions are imposed in Constraints (5). The 
nonnegativity conditions are usually assumed unless there are
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explicit constraints to the contrary. The nonnegativity of all 
variables can be assumed in all the following examples.

NVENTORYBALANCING CONSTRAINTS

Constraints (2) in the Basic Model are used to 
link production of different periods together by 
way of ending inventory levels.

A variation of the Basic Model would be to 
allow backordering. A backorder is the exact opposite of an 
inventoried item. Inventory occurs when production is 
greater than demand. Backorders occur when demand is 
greater than production. Define Bn to be the number of units 
of product i on backorder at the end of period t and bt to be the 
cost of having one backorder for product i for one period (we 
will assume this cost doesn't vary over the planning horizon).

A distinction must be made between inventory level and 
inventory status. Inventory level is the number of units of an 
item on hand {lit), while inventory status is the difference
between inventory level and backorder level {In—Bn). Because 
there are costs associated with holding inventory and 
backorders, an optimal solution will not have a positive 
inventory level and a positive backorder level for a product in 
the same period. The inventory balancing constraint now 
becomes:

&V-1 -  Bi,t-1 y  Pit -  f e  -  Bit )=  du for all i, t

Our new production model with backordering is shown below. 
Constraints (10) are included to ensure that all demand is met 
by the end of the planning horizon.

Minimize z =  £  £  {ctPu + hiI it +  biBlt) (6)
>=i <=i

subject to : Iif_x -  Bi t_ x + Pit -  Iit + Bit =  dit for all i, t <7)

Plt <  i f ax for all i, t (8)
I i0 =  0 for all i (9)

BiT = 0 for alii (10)
A second variation of the Basic Model is to permit lost sales. 
Lost sales are different from backorders in that they are not 
carried forward to the next period. Once a unit of demand is 
"lost", it cannot be recovered in a later period. The inventory 
balancing constraint which allows lost sales but no backorders 
is then:

h , - 1 + p u -  In +  Su =  dn for all i, t
where Stt is the number of lost sales of product i that occur in 
period t. The objective function would contain an appropriate 
lost sale cost penalty.

A third variation of the Basic Model considers production cost 
differentials. We will illustrate this by assuming that the cost 
differentials are due to producing in regulartime and overtime. 
Let Rit -  the number of units of product i produced in 
regulartime in period t and let Oit -  the number of units of 
product i produced in overtime in period t. Let R, and O, be the 
per unit production costs for regulartime and overtime

manufacture, respectively. The inventory balancing constraint 
(assuming no backorders or lost sales) becomes:

V i  +  Rn +  On ~  In =  dn fOr all U t 
The objective function becomes:

1V T

Minimize z =  Z Z W + o A + V , / )
1=1 1=1

Additional constraints will be needed to specify the maximum 
allowable regulartim e production and the maximum 
allowable overtime production. An explanation of how to 
construct these constraints for various situations is presented 
in the next section.

HANGING CAPACITY

There are several ways to define capacity. For 
our purposes the two most common are as a 
number of units or as a number of production 
hours. If each product always has the same 

proportion of total capacity or if all products have about the 
same production rate, capacity expressed in units may be 
appropriate. For more complex situations, such as when total 
capacity can be reallocated between products from period to 
period or products have differing production rates, capacity in 
terms of a number of production hours is the more 
appropriate convention. We will define capacity as a number 
of production hours.

Capacity changes can be classified as either short-term or 
long-term. Short-term changes to capacity would include the 
use of overtime and subcontracting. Changing the actual 
number of workers (and thus the production capacity in a 
labor intensive operation) would be an example of a long-term 
capacity change. An assumption of linear programming is that 
all variables are continuous. Obviously, it is difficult to hire a 
fraction of a worker. If the number of workers is large, this will 
usually not be a problem. If the number of workers is small, 
the linear programming formulation will give a lower bound 
on the cost of the optimal production plan. The lowest cost 
feasible production plan could be found by integer 
programming.

Short-Term Capacity Changes

Let us go back and consider the situation mentioned at the end 
of Section 4. Production could be planned to occur either 
during regulartime or overtime, with appropriate cost 
penalties (Pure Strategy II). Define Rt”“ to be the maximum 
number of regulartime hours allowed in period t and Otmax to be 
the maximum number of overtime hours allowed in period t. 
Let rrii be the number of hours it takes to produce one unit of 
product i. Notice that m fiit and m A t will be, respectively, the 
total number of regulartime hours and overtime hours used to 
produce product i in period t. The variation of the Basic Model 
that permits regulartime and overtime appears below.

M inim ize z  =  { r tR u +  o ,O u +  h ,I u ) (11)
1=1 f=l

sub ject to : I i t_, +  R i t +  O u -  I it =  d it for all i, t (12)
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N
£  m,.7?,., <  R ,max for a l l  t
i=1

£  m lO it <  0 (mai for a l l  t
i=l

7,0 =  0 for a l l  i

Sometimes regulartime wages are guaranteed regardless of 
worker utilization (i.e., workers are paid for a 40-hour work 
week, whether or not there is enough work to keep them busy 
the whole time). In this case regulartime production costs 
Z ^ Z ^ r , R„ are a sunk cost and can be removed from the 
objective function. The problem then reduces to trading off 
overtime production costs and inventory holding costs.

Long-Term Capacity Changes

Short-term  capacity changes assum e that maximum 
allowable regulartime production (R,™“) is constant. When the 
size of the workforce is allowed to vary (through hiring or 
layoffs), we have a long-term capacity change. By changing 
the size of the workforce, maximum regulartime production 
will now be a variable. Define Ht as the increase to the 
maximum regulartime horns in period t and F, as the decrease 
to the maximum regulartime hours in period t. A production 
capacity balancing constraint is then devised for the 
production planning model which relates 7?1.,m“ to 7?““, 
namely,

R™  + H t - F t -R™x =  0 for all 7 
As appropriate cost penalties for H, and F, in the objective 
function, let u be the cost of increasing capacity by one 
regulartime hour and let/  be the cost of decreasing capacity by 
one regulartime horn. An optimal solution will not have Ht 
and Ft both positive in the same period. The variation of the 
basic model which allows changes in the workforce size is 
given below.

Minimize z =  OB
i=i <=1 r=i

subject to : I i t_x +  Ri t -  I it =  dit for all i, t (17)
N

^  mjin < for all t (18)
i= l

R ^ + H t - F t - R ^ =  0 for all t (19)

It is possible to have the option of both short-term capacity 
changes (overtime) and long-term capacity changes (variable 
workforce size). In this case, both 7?,““ and 0 ,m“ will be 
variables. In practice, overtime is usually limited to a 
maximum percentage of regulartime hours. For example, if 
workers regularly work a 40-hour week and can be called on to 
put in a maximum of an additional 8 hours per week on 
overtime, the overtime maximum is 20% of the regulartime 
maximum. Additional constraints will be needed in the 
production planning model to describe 0 ““ as a percentage of 
7?““. This is handled by letting v equal the maximum overtime

hours allowed as a fraction of regulartime hours and by 
including the following constraints in the model:

v R T - O T = 0  for all t
The linear program of the production planning problem which 
allows overtime and changes to the workforce size follows. 
Notice that we do not consider a cost of changing 0 ,"“ . One 
could say that this cost is included in the costs u and/w hich 
have to do with changing 7?/“. When 7?t““  is changed, Otm“ 
changes as well.

N T  T

+ ° A  + V „ ) + Z W  + ^ )  ( 2 ° )
i= 1 t=\ t=\

subject to : I i t_x + Ri t +  Oit -  I it =  dit for all i, t (21)

£  mtRit - R ™ < 0  for all t (22)
1=1
N

^  miOit -  0 (max < 0 for all t (23)
;=i

+ H t - F t -  7?(max =  0 for all t (24)

v R ™ - 0 ' T =  0 for all t (25)
Finally, if regulartime wages are guaranteed, the following 
Objective Function (26) would replace Objective Function 
(20):

M m im z e z = y y i(o,Og + ^ 4 ) + ^ ( u < BX +uHt +JFt) (26)
<=i <=i r=i

where w is the regulartime wage per hour.

N EXAMPLE

An example is now presented to demonstrate 
how to formulate a production planning model 
as a linear program.

The Problem

Assume a company produces three product families and must 
plan monthly production levels for these families over the next 
six months. In order to satisfy demand, overtime is available 
when needed and the workforce size can be varied from month 
to month. Furthermore, workers are guaranteed the full 
monthly regulartime wage, even if underutilized. This results 
in a production planning model similar to Objective Function 
(26) with Constraint Set (21) through (25).

The forecasted demands for each product family are presented 
in Table 2. Other information relevant to the product families 
is listed in Table 3.

The regulartime wage is $12.00 per hour and the overtime 
wage is $18.00 per horn. The cost of hiring one worker is $1200 
and the cost of laying off one worker is $900. Each worker 
equates to 150 regulartime hours per month (and is 
guaranteed payment for those 150 hours). Each worker can 
work up to 37.5 overtime hours per month. The initial number

(13)

(14)

(15)
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of workers is 35 and the workforce cannot exceed 50 workers in 
any month.

Table: 2 Forecasted Monthly Demands

Month 1
Product Family 

2 3
1 4000 8000 10000
2 5000 9000 10000
3 6000 12000 13000
4 6000 9000 17000
5 4000 5000 8000
6 1000 8000 9000

Table: 3 Product Family Information

Product Family 
1 2 3

Beginning Inventory 0 3000 8000
Holding Cost per Unit per Month $0.55 $0.30 $0.35
Production Rate (units per hour) 2 4 3

The problem is one of ditermining monthly production rule 
for each product family that will minimize totoal relevant cost.

The total relevant costs are composed of regulartime wages, 
overtime wages, inventory holding costs, hiring costs, and 
layoff costs.

The first step is to modify some of the above data into useful 
model parameters. Some information, such as the holding 
cost per unit per month and the regulartime wage per hour, 
needs no modification. The overtime production costs per 
unit for each product group (ol, o2, o3) are $9.00, $4.50, and 
$6.00, respectively, found by dividing the $18.00 overtime wage 
by the production rates. The per-hour hiring cost (u) is $8.00 
($1200 hiring cost per worker divided by 150 regulartime hours 
per month) and the per hour layoff cost (/) is $6.00 ($900 
divided by 150 hours). The productivity coefficients (m„m2,m,) 
will be 0.50, 0.25, and 0.3333, respectively, which are in hours 
per unit and thus just the reciprocal of the production rates. 
Beginning regulartime capacity (/?.”“) is 5,250 hours (150 hours 
per worker times 35 workers) and regulartime capacity cannot 
exceed 7,500 hours (150 hours per worker times 50 workers). 
Finally, the maximum overtime hours allowed as a fraction of 
regulartime hours (v) is 0.25 (37.5 maximum overtime hours 
divided by 150 regulartime hours).

The resulting linear programming formulation of the 
production planning example appears below. The linear 
program will contain 82 variables and 52 constraints. As the 
number of products (or product families) and length of the 
planning horizon increases, the number of variables and 
constraints becomes enormous. If our example had 100 
product families and a 24 month planning horizon, there 
would be 7,397 variables and 2,545 constraints.

6

Mhamizez=^(9Cj, +4.5G* +60,, +0.55/„ +0.304 +0.354 +12/?" +8H , +6Ft)  (27)
t=1

subject to : I i t_ x +  Rt t +  Oit - / „  =  d it for all i, t (28)

0.50Rlt +  0.25Rlt +  0.3333J?3, - R tnm =  0 for all t (29)

O.5O0„ +  0.250 2t +  0.333303, -  0 “  =  0 for all/ (30)

R ^ + H t - F t - R T = 0 for all t (31)
O.25^,max- 0 , max = 0 for all t (32)

T>max
-Ko = 5250 (33)

R,“  <  7500 for all t (34)

oII© (35)

2̂0 =  3000 (36)

Ao =  8000 (37)

The Solution

The optimal linear programming solution to our example was 
obtained in 90 simplex pivots using LINDO. The minimum 
value of the Objective Function (27) was $594,001.75. Again, 
linear programming assumes that all variables are continuous, 
and some variables in our solution had fractional values (for 
example, in the optimal solution./?,, was 12751.2734 units). If 
we assume that all variables must be integer and especially 
that each R r  must be a multiple of 150 hours (so that the 
number of workers will be integer if no part-time workers are 
allowed), a feasible integer solution can be constructed with 
an objective function value of $595,331.25. Since the gap 
between the upper bound and lower bound is small (only 
$1329.50 or 0.22%), it is probably not worth the added 
computational effort to locate the optimal integer solution or 
verify that our feasible integer solution is optimal.

A summary of the feasible integer solution is given in Table 4 
and the cost summary of this solution is presented in Table 5. 
In Table 4, “RT” denotes the number of units produced in 
regulartime, “OT” represents the number of units produced in 
overtime, and “INV” is the ending inventory level.

Table: 4 Aggregate Production Planning Solution

1
Product Family 

2 3
Mo
nth

RT OT INV RT OT INV RT OT INV Workers

1 4000 0 0 5000 0 0 12750 0 10750 50

2 5000 0 0 9000 0 0 8250 0 9000 50

3 3252 2748 0 12000 0 0 8622 3 4625 50

4 2250 3750 0 9000 0 0 12375 0 0 50

5 4000 0 0 5000 0 0 8000 0 0 40

6 1000 0 0 8000 0 0 9000 0 0 37

Table: 5 Aggregate Production Plan Cost

Regulartime Wages $498,600.00

Overtime Wages 58,491.00

Hiring Cost 18,000.00

Layoff Cost 11,700.00

Inventory Holding Cost 8,531.25

Total Cost $595,331.25
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ONCLUSIONS AND FUTURE RESEARCH

This paper explains how to model different APP 
en v iro n m en ts using  the m a th e m a tica l 
modeling technique of linear programming. 
Beginning with a very simple example, the 

article progresses through increasingly complex formulations. 
A later section of the article presents and solves a multiperiod- 
multiproduct APP model. UNDO was used to solve the model 
and the solution was presented in a series of tables. These 
examples were designed to help managers easily model a 
variety of APP environments.

Most operations management textbooks have avoided 
discussing the application of linear programming for 
modeling APP problems. Linear programming is deemed to be 
too complex for managers to understand. However, the 
authors of this article disagree with this view. Also, for many 
years, solving linear program m ing m odels required 
specialized software. Now, however, spreadsheet applications 
are capable of solving linear programming problems-thus 
eliminating the need for specialized software. Given our view

that linear programming is not too complex for managers to 
understand and given that LP solving tools are now readily 
available, we believe th a t in trod u cto ry  op eration s 
management textbooks should include LP formulations for 
APP problems.

Will the availability of LP solving tools be enough to encourage 
managers to use LP modeling for aggregate production 
planning? This is a question that needs to be investigated 
further. Yet, it is widely known that managers are often content 
with satisficing in their decision-making . That is, they prefer 
an easy to understand method that may not lead to an optimal 
decision over a realistic, but more complex, approach. This is 
evidenced by the coverage of aggregate production planning 
in many of the currendy popular operations management 
textbooks. These textbooks claim that the easiest of all APP 
approaches for managers to understand is the graphical 
m ethod approach. However, the graphical approach 
compromises when it comes to the realism of the decision 
environment. The following figure illustrates the tradeoff 
between model understandability and model realism.

Model Understanding -  Realism Tradeoff
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Figure: 1

The ideal planning model should have a high level of realism and a high level of understanding by managers. Graphical methods, 
while easy to understand, lack the ability to effectively model complex planning environments. Linear programming, however, 
can be adapted to complex decision environments and, as it has been illustrated in the paper, can be made easily understandable 
to managers. Perhaps a future study can confirm that the linear programming modeling of aggregate production planning is 
indeed an understandable and practical approach for managers to use.
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1. If the process is capital intensive, long-term capacity changes would be brought about mainly by the addition or removal of 
manufacturing equipment.

2. The number of product groups is small and the length of the planning horizon is short only so that our solution can be easily 
illustrated.

3. The optimal integer solution could be found by integer programming. However, this solution's value could not be lower 
than $594,001.75, thus $594,001.75 is a lower bound. Our feasible integer solution with a value of $595,331.25 is an upper 
bound on the optimal integer solution. Furthermore, our feasible integer solution might be the optimal integer solution. 
(The optimal integer solution to this example has an objective function value of $594,731.25.)
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