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ABSTRACT

Aggregate production planning (APP) seeks to determine production levelsfor a company’sproductfam ilies overa 12 to 18-month
planning horizon. However, the coverage of methods available to create feasible, low-cost aggregate production plans in many
production and operations management textbooks does not begin to capture the complexity o faggregate production planning,
especially its multiperiod, multiproductenvironment. Moresophisticated solution proceduressuch as linear programm ing receive

littleor nocoverageatall. Thispaperwillexplain how to modeldifferentAPPenvironmentsusinglinearprogramming. Examplesof
eachenvironmentareincluded.
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INTRODUCTION

Aggregate production planning (APP) is a medium-range
component of a company's overall production planning
system. Atthis planning stage, production levels for product
families are determined in order to meet a given demand
pattern overthe planninghorizon (Cox&Stone, 2010).

The minimum costaggregate production plan may resultfrom
any one of three “pure” strategies or a mixed-strategy
consisting of a combination of any two, or all three pure
strategies Heizer & Render, 2011; Stevenson, 2009). The pure
strategiesare:

0] Use inventory and stockouts as a buffer to separate
production from demand.

(i) Change the utilization of the workforce through
overtime and undertime to match production with
demand.

(iii)  Change the size of the workforce through hiring and
layoffsto match production with demand.

For students in a first course in operations management,
aggregate production planning can be an excellent
introduction to the challenges involved in developing a
feasible, low-costproduction plan.

However, the coverage of methods available to create feasible,
low-cost production plans in many production and
operations management textbooks does not begin to capture
the complexity of aggregate production planning, especially
its multiperiod, multiproduct environment. More
sophisticated solution procedures such as linear
programmingreceive little orno coverage atall.

Heizer and Render (2011) and Stevenson (2009) discuss why
linear programming and other mathematical modeling
techniques are not widely used in industry for activities such
as aggregate production planning. According to them,
mathematical modeling techniques tend not to be accepted
by managers as decision makingtools because:

(i) Mathematical models are too unrealistic. Managers
complain that some modeling assumptions, such as
linear costs or a deterministic environment, do not
capture the complexity of aggregate production
planning and managers will not use them if they are not
realistic.

(i) Mathematical solution techniques are too complicated.
Managers do not understand how the techniques work
and managers will not use them if they do not
understand them.

There are actually two competing model criteria here: the
model's level of realism of a planning activity and the level of
managerialunderstanding ofhow the modelworks.

Models are abstractions ofreality. In model building, thereisa
trade-offbetween realism and abstraction but also a trade-off
between complexity and simplicity. Ifthe reality ofa decision
is complex and difficult to understand, a model would be
constructed which givesup some ofthatrealism in return fora
betterunderstanding ofthe decisionto be made.

Another approach would be to increase managers'

understanding of mathematical modeling techniques,
specifically how to model various decision environments, so
that through experience, more realistic planning models can
be constructed. Thatisourpurpose inthis paper.

This paper will explain, within the context of the three pure
strategies, howto model different APP environments using the
mathematical modeling technique of linear programming.
The modeled decision problems can then be solved by linear
programming software such as UNDO (Schrage, 1997) or a
spreadsheetapplication such as Excelwith the Solveradd-on .

The nextsection ofthe paper reviews the relevantliterature. In
Section 3, the basic concepts, assumptions, and definitions
used throughout the rest of the paper are introduced and a
simple production planning problem is created and studied.
Section 4 looks more closely at the linkage between inventory
and/or stockouts between neighboring time-periods. The
discussion will illustrate a variety of options available under
Pure Strategy I

Pure Strategies | and Il both involve changing production
capacity and are discussed together in Section 5. The
formulation and solution of a multiperiod-multiproduct APP
problem appears in Section 6. Section 7 concludes the paper
with discussion and asuggestion for future research.

EVIEWOF RELEVANTLITERATURE

Aggregate production planningis an approach

to plan for capacity to meet the medium-term

demand forecast over a 12 to 18 month period.

Aggregate production planning has been a
subject of research since the 1950s. Holt, Modigliani and
Simon (1955) proposed a Linear Decision Rule (LDR)
approach for finding an optimal production and employment
schedule, given quadratic cost functions for inventory, labor
and overtime costs. In another earlywork by Bowman (1956),
a specialized linear optimization technique called the
Transportation Method was proposed to find the cost
minimization solution to production planning. A more
generalized approach using Linear Programming (LP) to find
an optimal mix of production and employee levels was first
proposed by Hanssmann and Hess (1960). The LP approach
was extended further by Goodman (1974) to incorporate
multiple objective functions by using Goal Programming.
Linear programming continues to be a useful tool in modeling
and solving large-scale optimization problems, including
those involving production planning and scheduling (see for
example, Sang-jin and Logendran (1992), Wang and Liang
(2005),andWu (2010).

Others have proposed methods for finding satisfactory, if not
optimal, aggregate production planning solutions. Interested
readers should see, for example, Bowman (1963), Jones (1967),
Taubert (1968) and Lee andKhumawala (1974).

Saad (1982) surveyed and classified then existing aggregate
production planning models into two broad categories:
descriptive and normative models. Based on Saad's work,
Sakalli, (2010) et al. classified traditional models of aggregate
production planning into six categories: 1) linear
programming, 2) linear decision rule (LDR), 3) transportation,
4) management coefficient approach, 5) search decision rule
(SDR), and 6) parametric production planning models. Some
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ofthese models have made their way into modern operations
managementtextbooks.

Six current textbooks in production and operations
management were reviewed for their coverage of aggregate
production planning. Alltextbooks mentioned the three pure
strategies in some form and also the concept of a mixed (or
hybrid) strategy.

Table : Textbook Procedures for Generating an Aggregate
Production Plan

Author Trial-and- Transportation
Error Procedures Model

Heizer and Render (2011) X X
Stevenson (2009) X X
Krajewski, et. al.(2010) X X
Jacobs and Chase (2010) X X
Reid and Sanders (2010) X

Swink, et. al.(2011) X

As Table 1 shows, all the textbooks introduced some type of
trial-and-error solution procedure. These procedures consist
ofcomparing production and demand levels using period-by-
period or cumulative graphs and using spreadsheets to cost
out various solutions—usually the three pure strategies.
However, both Jacobs and Chase and Reid and Sanders create
and costoutamixed strategy aswell.

As for methods that will find the minimum cost aggregate
production plan, only Stevenson (2009) and Jacobs and Chase
(2010) mention linear programming as a possible candidate.
No textbook gives an example using linear programming to
model and solve an APP problem.

A modification of the transportation model approach
attributed to Bowman (1956) is the only procedure presented
that would generate a minimum cost aggregate production
plan. To use the transportation model, demand can only be
met by using inventory/backorders (Pure Strategy I) and
regulartime, overtime, and subcontracting (Pure Strategy ).

The textbook examples are typically 3 or 4 time periods in
length for a single product. Options for meeting demand in a
time period consist of regulartime and overtime production
and subcontracting production to another company. All
examples allowthe holding ofinventoryfrom one period to the
next. Only Stevenson introduces the possibility of
backordering. Stevenson (2009) is the only author that also
suggeststhatthe model can be extended to multiple products.

HEBASICS

Every linear program is designed to optimize

an objective function subject to constraints

that define the set of feasible solutions. In the

case of aggregate production planning, the
goal is to find the plan that minimizes the total relevant cost
function. The constraints can be broadly defined as belonging
to one ofthree groups:

1. Inventory "Balancing" Constraints,
2. Simple UpperBounds,
3. Production CapacityVariation Constraints.

We begin by introducing the following notation (other
notationwillbe introduced as needed throughoutthe article).

N = totalnumberofproducts (orproductfamilies)

T — numberofperiodsinthe planninghorizon

Pu = numberofunitsofproductiproducedinperiodt

la = endinginventoryofproductiinperiodt

P~a = maximum allowable production level of product i
inperiodt

du = demandforproductiinperiodt

a — perunitproduction costofproducti

hi — inventory holding cost per unit per period of

producti

Our first example is to determine the number of units of each
productito produce in each period t. There is an upper limit
on production in each period. The objective is to minimize
total production costs plus total inventory holding costs over
the planning horizon. The problem can be stated in linear
programming form as shown below. The Objective Function
(1), to be minimized, and the Constraint Set (2) - (5) will be
referred to as the Basic Model. The solution will consist ofthe
values of the variables (production and inventory levels) that
satisfy the Constraint Set and result in the minimum value of
the Objective Function.

N T
Minimizez - Y L (CPu+htlu) @
i=l =1
subject to: M+PUit- dit foralli,t )]
Pit< P r foralli, t ©)]
1i0=0 foralli @

PitIit>0 foralli,t ®

An assumption we will make is that per unit production costs
are relatively constant over time. This results in E~AE”c, P,,
being a constant. Another assumption is that the inventory
holdingcostperunitperperiodis constant overtime.

The rather simple nature ofthis model comes aboutby the fact
that we only need to minimize total holding costs. Real
production planning problems are usually more complex.
Before we get to these more complex (and realistic) models,
let's look at this current model more closely. Constraints (2)
are our inventory balancing constraints. They express the
accountant's inventory balance equation, namely that
beginning inventory (which is ending inventory from the
previous period) plus production minus ending inventory
equals demand (goods sold). This is the basic constraint
which can be modified to give all the other kinds of inventory
balancing constraints. The upper bounding of production is
accomplished by Constraints (3). These constraints are called
simple upper bound (SUB) constraints. Atypical convention
is to assume that the inventory levels at the beginning of the
problem are zero (Constraints (4)). If not, these inventory
levels should be explicitly stated as constraints. Finally, the
nonnegativity conditions are imposed in Constraints (5). The
nonnegativity conditions are usually assumed unless there are
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explicit constraints to the contrary. The nonnegativity of all
variables can be assumed in all the following examples.

NVENTORYBALANCING CONSTRAINTS

Constraints (2) in the Basic Model are used to
linkproduction ofdifferent periods together by
way ofendinginventory levels.

A variation of the Basic Model would be to
allow backordering. A backorder is the exact opposite of an
inventoried item. Inventory occurs when production is
greater than demand. Backorders occur when demand is
greater than production. Define Bnto be the number of units

ofproduction backorder atthe end ofperiod t and btto be the
cost of having one backorder for product i for one period (we
willassume thiscostdoesn'tvaryoverthe planning horizon).

A distinction must be made between inventory level and
inventory status. Inventory level is the number of units ofan

item on hand {lit), while inventory status is the difference

between inventory level and backorder level {I—Bn). Because
there are costs associated with holding inventory and
backorders, an optimal solution will not have a positive
inventory level and a positive backorder level for a product in
the same period. The inventory balancing constraint now
becomes:

&V-1- Bit1ly Pt- fe - Bit)= du foralli,t

Ournew production modelwith backordering is shown below.
Constraints (10) are included to ensure that all demand is met
bythe end ofthe planninghorizon.

Minimizez = £ £ {ctPu+ hilit+ biBlY) (6)

subjectto: lif x- Bitx+ Pit- lit+ Bit=dit foralli,t <)
Pit<ifa foralli,t (8

1i0=0 foralli (9

BiT=0 foralii (10)

A second variation of the Basic Model is to permit lost sales.
Lost sales are different from backorders in that they are not
carried forward to the next period. Once a unit of demand is
"lost", it cannot be recovered in a later period. The inventory
balancing constraintwhich allowslost salesbutno backorders
isthen:

h,-1+pu-In+Su=dn foralli,t

where Sttis the number of lost sales of product i that occur in
period t. The objective functionwould contain an appropriate
lostsale cost penalty.

Athird variation ofthe Basic Model considers production cost
differentials. We will illustrate this by assuming that the cost
differentials are due to producingin regulartime and overtime.
Let Rit - the number of units of product i produced in
regulartime in period t and let Oit- the number of units of
productiproduced in overtime in period t. LetR,and O,be the
per unit production costs for regulartime and overtime

manufacture, respectively. The inventorybalancing constraint
(assuming no backorders or lost sales) becomes:

Vi+Rn+On~In=dn fQallUt

The objective function becomes:
v T

Minimizez=Z ZW +0 A +V ,/)
17 1=
Additional constraints will be needed to specify the maximum
allowable regulartime production and the maximum
allowable overtime production. An explanation of how to
construct these constraints for various situations is presented
inthe nextsection.

HANGING CAPACITY

There are several ways to define capacity. For

our purposes the two most common are as a

number of units or as a number of production

hours. If each product always has the same
proportion of total capacity or if all products have about the
same production rate, capacity expressed in units may be
appropriate. For more complex situations, such aswhen total
capacity can be reallocated between products from period to
period or products have differing production rates, capacity in
terms of a number of production hours is the more
appropriate convention. We will define capacity as anumber
ofproduction hours.

Capacity changes can be classified as either short-term or
long-term. Short-term changes to capacity would include the
use of overtime and subcontracting. Changing the actual
number of workers (and thus the production capacity in a
labor intensive operation) would be an example ofalong-term
capacity change. Anassumption oflinear programmingis that
all variables are continuous. Obviously, it is difficult to hire a
fraction ofaworker. Ifthe number ofworkers is large, this will
usually not be a problem. Ifthe number of workers is small,
the linear programming formulation will give a lower bound
on the cost of the optimal production plan. The lowest cost
feasible production plan could be found by integer
programming.

Short-Term Capacity Changes

Letus gobackand considerthe situation mentioned atthe end
of Section 4. Production could be planned to occur either
during regulartime or overtime, with appropriate cost
penalties (Pure Strategy Il). Define Rt to be the maximum
number ofregulartime hours allowed in period tand Onaco be
the maximum number of overtime hours allowed in period t.
Let rrii be the number of hours it takes to produce one unit of
producti. Notice that m fitand mAtwill be, respectively, the
total number ofregulartime hours and overtime hours used to
produce productiin period t. The variation ofthe Basic Model
thatpermitsregulartime and overtime appears below.

Minimize z = {rtRu+ 0,0u+ h,lu) (11)
1=1 f=l

subjectto: lit, + Rit+ Ou- lit=dit foralli,t (12)
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' 13
£_ 1m.7?,., < Rmex forallt

I=

£ mlOit< 0 frai forallt (14)
: 7,0=0 foralli (15)

Sometimes regulartime wages are guaranteed regardless of
worker utilization (i.e., workers are paid for a 40-hour work
week, whether or not there is enough work to keep them busy
the whole time). In this case regulartime production costs
ZNZ"r, R, are a sunk cost and can be removed from the
objective function. The problem then reduces to trading off
overtime production costs and inventory holding costs.

Long-Term Capacity Changes

Short-term capacity changes assume that maximum
allowable regulartime production (R™) is constant. When the
size of the workforce is allowed to vary (through hiring or
layoffs), we have a long-term capacity change. By changing
the size of the workforce, maximum regulartime production
will now be a variable. Define Ht as the increase to the
maximum regulartime horns in period tand F,as the decrease
to the maximum regulartime hours in period t. Aproduction
capacity balancing constraint is then devised for the
production planning model which relates 72l to 77
namely,

R™ +Ht-Ft-R™x=0 forall7

As appropriate cost penalties for H, and F, in the objective
function, let u be the cost of increasing capacity by one
regulartime hourand let/ be the costofdecreasing capacity by
one regulartime horn. An optimal solution will not have Ht
and Ftboth positive in the same period. The variation of the
basic model which allows changes in the workforce size is
givenbelow.

Minimize z = OB
i=i <l r=i
subjectto: litx+ Rit- lit=dit foralli,t (17)
N
N mjin < forallt (18)

RA+Ht-Ft-R ~= 0 forallt (19)

It is possible to have the option of both short-term capacity
changes (overtime) and long-term capacity changes (variable
workforce size). In this case, both 72 and 0,m¢ will be
variables. In practice, overtime is usually limited to a
maximum percentage of regulartime hours. For example, if
workers regularlywork a 40-hourweek and can be called on to
put in a maximum of an additional 8 hours per week on
overtime, the overtime maximum is 20% of the regulartime
maximum. Additional constraints will be needed in the
production planningmodel to describe 0 ““ as apercentage of
77““. This is handled by letting v equal the maximum overtime

hours allowed as a fraction of regulartime hours and by
includingthe following constraints in the model:

VRT-OT=0 forallt
The linear program ofthe production planning problem which

allows overtime and changes to the workforce size follows.
Notice that we do not consider a cost of changing 0,"*. One
could say that this cost is included in the costs u and/which
have to do with changing 7?/. When 72** is changed, Omn¥
changes aswell.

N T T

O A +V,,]+_\ZW )20

i=1 t=\

subjectto: litx+ Rit+ Oit- lit=dit foralli,t (22)

£ mRit-R ™ <0
11
N
N miOit- 0 fiax< 0 forallt (23)

+Ht-Ft- 7%a&x=0 forallt (24)
VR™-0'T=0 forallt(25)

Finally, if regulartime wages are guaranteed, the following
Objective Function (26) would replace Objective Function
(20):

forallt (22)

Mmimzez=y y i0,0g+"4)+ " (u < BX+uHt+JFt) (26)
< < r=i

wherew isthe regulartimewage per hour.

N EXAMPLE

An example is now presented to demonstrate
howto formulate a production planning model
asalinear program.

TheProblem

Assume acompany produces three product families and must
plan monthly production levels for these families over the next
six months. In order to satisfy demand, overtime is available
when needed and the workforce size can be varied from month
to month. Furthermore, workers are guaranteed the full
monthly regulartime wage, even if underutilized. This results
in aproduction planning model similar to Objective Function
(26) with Constraint Set (21) through (25).

The forecasted demands for each productfamily are presented
in Table 2. Other information relevant to the product families
islistedinTable3.

The regulartime wage is $12.00 per hour and the overtime
wage is $18.00 per horn. The cost ofhiring one workeris $1200
and the cost of laying off one worker is $900. Each worker
equates to 150 regulartime hours per month (and is
guaranteed payment for those 150 hours). Each worker can
workup to 37.5 overtime hours per month. The initialnumber
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ofworkersis 35 and the workforce cannot exceed 50 workersin
anymonth.

Table: 2 Forecasted Monthly Demands
Product Family

Month 1 2 3
1 4000 8000 10000
2 5000 9000 10000
3 6000 12000 13000
4 6000 9000 17000
5 4000 5000 8000
6 1000 8000 9000

Table: 3 Product Family Information

Product Family

1 2 3
Beginning Inventory 0 3000 8000
Holding Cost per Unit per Month  $0.55  $0.30 $0.35
Production Rate (units per hour) 2 4 3

The problem is one of ditermining monthly production rule
foreach productfamilythatwillminimize totoal relevant cost.

The total relevant costs are composed of regulartime wages,
overtime wages, inventory holding costs, hiring costs, and
layoffcosts.

The first step is to modify some of the above data into useful
model parameters. Some information, such as the holding
cost per unit per month and the regulartime wage per hour,
needs no modification. The overtime production costs per
unit for each product group (ol, 02, 03) are $9.00, $4.50, and
$6.00, respectively, found by dividingthe $18.00 overtime wage
by the production rates. The per-hour hiring cost (u) is $8.00
($1200 hiring cost perworker divided by 150 regulartime hours
per month) and the per hour layoff cost (/) is $6.00 ($900

divided by 150 hours). The productivity coefficients (m,,m2m,)
will be 0.50, 0.25, and 0.3333, respectively, which are in hours
per unit and thus just the reciprocal of the production rates.

Beginning regulartime capacity (/?.”*) is 5,250 hours (150 hours
perworkertimes 35 workers) and regulartime capacity cannot
exceed 7,500 hours (150 hours per worker times 50 workers).
Finally, the maximum overtime hours allowed as a fraction of
regulartime hours (v) is 0.25 (37.5 maximum overtime hours
divided by 150 regulartime hours).

The resulting linear programming formulation of the
production planning example appears below. The linear
program will contain 82 variables and 52 constraints. As the
number of products (or product families) and length of the
planning horizon increases, the number of variables and
constraints becomes enormous. If our example had 100
product families and a 24 month planning horizon, there
wouldbe 7,397 variables and 2,545 constraints.

6
Mmmizepfégq', +4,5G* +60,, +055/,, +0.304 +0.354 +12/7" +8u, +6r1) (27)

subjectto: litvx+ Rtt+ Oit-/,, =dit foralli,t (28)

0.50RIt + 0.25RIt + 0.3333J?3 -R nm= 0 forallt (29)

0.500,, + 0.250 2t + 0.333303,- 0« =0 forall/ (30)
RA+Ht-Ft-RT=0 forallt (31)
0.25Nmex-0,nx=0 forallt (32)

Prax
Ko =5250 (33)
R/ <7500 forallt (34)

o

e~ (35)
~rp = 3000 (36)
Ao~ 8000 (37)

The Solution

The optimal linear programming solution to our example was
obtained in 90 simplex pivots using LINDO. The minimum
value of the Objective Function (27) was $594,001.75. Again,
linear programming assumes thatall variables are continuous,
and some variables in our solution had fractional values (for

example, in the optimal solution./?,, was 12751.2734 units). If
we assume that all variables must be integer and especially

that each R r must be a multiple of 150 hours (so that the
number ofworkers will be integer if no part-time workers are
allowed), a feasible integer solution can be constructed with
an objective function value of $595,331.25. Since the gap
between the upper bound and lower bound is small (only
$1329.50 or 0.22%), it is probably not worth the added
computational effort to locate the optimal integer solution or
verifythatour feasible integersolution isoptimal.

Asummary of the feasible integer solution is given in Table 4
and the cost summary of this solution is presented in Table 5.
In Table 4, “RT” denotes the number of units produced in
regulartime, “OT” represents the number ofunits produced in
overtime, and “INV”is the endinginventory level.

Table: 4 Aggregate Production Planning Solution
Product Family

1 2 3

Mo RT OT INV RT OTINV RT OT INV Workers
nth

1 4000 O 0 5000 0 O 12750 0 10750 50
2 5000 O 0 9000 0 O 8250 0 9000 50
3 3252 2748 0 12000 0 O 8622 3 4625 50
4 2250 3750 O 9000 O O 12375 0 0 50
5 4000 O 0 5000 0 O 8000 O 0 40
6 1000 O 0 8000 0 0 9000 O 0 37

Table:5 Aggregate Production Plan Cost

Regulartime Wages $498,600.00
Overtime Wages 58,491.00
Hiring Cost 18,000.00
Layoff Cost 11,700.00
Inventory Holding Cost 8,531.25
Total Cost $595,331.25
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ONCLUSIONS AND FUTURE RESEARCH

This paper explains how to model different APP

environments using the mathematical

modeling technique of linear programming.

Beginning with a very simple example, the
article progresses through increasingly complex formulations.
Alater section ofthe article presents and solves a multiperiod-
multiproduct APP model. UNDO was used to solve the model
and the solution was presented in a series of tables. These
examples were designed to help managers easily model a
variety of APP environments.

Most operations management textbooks have avoided
discussing the application of linear programming for
modeling APP problems. Linear programmingis deemed to be
too complex for managers to understand. However, the
authors of this article disagree with this view. Also, for many
years, solving linear programming models required
specialized software. Now, however, spreadsheet applications
are capable of solving linear programming problems-thus
eliminating the need for specialized software. Given ourview

that linear programming is not too complex for managers to
understand and given that LP solving tools are now readily
available, we believe that introductory operations
management textbooks should include LP formulations for
APPproblems.

Will the availability of LP solving tools be enough to encourage
managers to use LP modeling for aggregate production
planning? This is a question that needs to be investigated
further.Yet, itiswidely known that managers are often content
with satisficing in their decision-making . That s, they prefer
an easyto understand method that may notlead to an optimal
decision over a realistic, but more complex, approach. This is
evidenced by the coverage of aggregate production planning
in many of the currendy popular operations management
textbooks. These textbooks claim that the easiest of all APP
approaches for managers to understand is the graphical
method approach. However, the graphical approach
compromises when it comes to the realism of the decision
environment. The following figure illustrates the tradeoff
between modelunderstandability and model realism.

Model Understanding - Realism Tradeoff

A Graphical Idea
High Model Model
more Realism
K
w
1 Better
:ﬁ_,' Understanding
£
Linear
Programming
Low
----------- >
Low . High
Realism
Figure: 1

The ideal planning model should have a high level of realism and a high level of understanding by managers. Graphical methods,
while easy to understand, lack the ability to effectively model complex planning environments. Linear programming, however,
can be adapted to complex decision environments and, as ithas been illustrated in the paper, can be made easily understandable
to managers. Perhaps a future study can confirm that the linear programming modeling of aggregate production planning is
indeed an understandable and practical approach for managers to use.

DIAS TECHNOLOGY REVIEW ®m VOL.8 NO.1 m APRIL 2011 - SEPTEMBER 2011 83



MODELING AGGREGATE PRODUCTION PLANNING PROBLEMS AS LINEAR PROGRAMS

REFERENCES

1. Bowman,E.H. (1956). Production Scheduling by the Transportation Method ofLinear Programming. [Article]. Operations
Research, 4(1), 100-103.

2. Bowman, E. H. (1963). Consistency and Optimality in Managerial Decision Making. Management Science, 9(2), 310-321.

3 Cox, J. F, &Blackstone, J. H. (2010). APICS dictionary / editors, James F. Cox, I11,John H. Blackstone, Jr (13th ed.). Alexandria,
VA:APICS.

4. Goodman, D. A. (1974). A Goal Programming Approach to Aggregate Planning Production and Work Force. [Article].
Management Science, 20(12), 1569-1575.

5. Hanssmann, F., & Hess, S. W. (1960). A Linear Programming Approach to Production and Employment Scheduling.
ManagementTechnology, 1(1), 46-57.

6. Heizer,J. H., &Render, B. (2011). Operations management (10th ed.). Upper Saddle River, N.J.: Prentice Hall.

7. Holt, C. C., Modigliani, F,, & Simon, H. A. (1955). A Linear Decision Rule for Production and Employment Scheduling.
Management Science, 2,159-177.

8. Jacobs, FR., &Chase, R.B. (2010). Operations and supply management: the core (2nd ed.).Boston: McGraw-Hill Irwin.

9. Jones,C.H. (1967). Parametric Production Planning. [Article]. ManagementScience, 13(11), 843-866.

10. Krajewski, L. J., Ritzman, L. R, & Malhotra, M. K. (2010). Operations management: processes and supply chains (9th ed.).
UpperSaddle River, N.J.: Prentice Hall.

11. Lee,W.B., & Khumawala, B. M. (1974). Simulation Testing of Aggregate Production Planning Models in an Implementation
Methodology. [Article]. Management Science, 20(6), 903-911.

12. Reid,R.D., &Sanders, N.R. (2010). Operations management: an integrated approach (4th ed.). Hoboken, NJ: JohnWiley.

13. Saad, G. H. (1982). An overview of production planning models: structural classification and empirical assessment.
[Article]. InternationalJournal ofProduction Research, 20(1), 105-114.

14. Sakalli, U. S., Baykog, 0. F,, & Birgoren, B. (2010). A possibilistic aggregate production planning model for brass casting
industry. [Article]. Production Planning & Control, 21 (3), 319-338.

15. Sang-jin, N., & Logendran, R. (1992). Aggregate production planning—A survey of models and methodologies. [Article].
EuropeanlJournal of Operational Research, 61 (3), 255-272.

16. Schrage,L.E. (1997).OptimizationmodelingwithLINDO (5th ed.). Pacific Grove, Calif.: DuxburyPress.

17.  Simon,H.A. (1956). Rationalchoice and the structure ofthe environment. Psychological Review, 63(2), 129-138.

18. Stevenson,W.J. (2009). Operations management (10th ed.). Boston: McGraw-Hill/lIrwin.

19. Swink, M., Melnyk, S. M., Cooper, B., & Hardey, J. (2011). Managing operations across the supply chain (1sted.). NewYork:
McGraw-Hill Irwin.

20. Taubert,W. H. (1968). ASearch Decision Rule for the Aggregate Scheduling Problem. Management Science, 14(6), B-343-B-
359.

21. Walkenback,J. (2007). Excel 2007 Bible. Indianapolis, IN:Wiley Publishing, Inc.

22. Wang, R.-C., & Liang, T.-F. (2005). Applying possibilistic linear programming to aggregate production planning. [Article].
InternationalJournal of Production Economics, 98(3), 328-341.

23.  Wu,Y. (2010). Atime staged linear programming model for production loading problemswithimportquotalimitin a global
supplychain. [Article]. Computers & Industrial Engineering, 59(4), 520-529.

1. Ifthe processis capital intensive, long-term capacity changeswould be broughtabout mainly by the addition or removal of
manufacturingequipment.

2. The number ofproductgroupsissmalland the length ofthe planninghorizon is shortonlyso that our solution can be easily
illustrated.

3. The optimal integer solution could be found by integer programming. However, this solution's value could not be lower
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than $594,001.75, thus $594,001.75 is a lower bound. Our feasible integer solution with a value of $595,331.25 is an upper
bound on the optimal integer solution. Furthermore, our feasible integer solution mightbe the optimal integer solution.
(The optimal integersolution to this example has an objective function value 0f$594,731.25.)
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