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Abstract 

Cascade-2 algorithm is a variant of well-known cascade-correlation algorithm that is widely investigated 
constructive training algorithm for designing cascade feed forward neural networks. This paper proposes a 

modified Cascade-2 algorithm with adaptive slope sigmoid function (MC2AASF). The algorithm emphasizes on 

architectural adaptation and functional adaptation during learning. This algorithm is a constructive approach of 

designing cascade architecture. To achieve functional adaptation, the slope of the sigmoid function is adapted 

during training. One simple variant is derived from MC2AASF is where the slope parameter of sigmoid function 

used at the hidden layers’ nodes is fixed to unity. Both the variants are compared to each other on five function 

approximation tasks. Simulation results show that adaptive slope sigmoid function presents several advantages 

over standard fixed shape sigmoid function, resulting in increasing flexibility, smoother learning, better 

generalization performance and better convergence. 

Keywords: Adaptive slope sigmoid function; Cascade-Correlation algorithm; Cascade-2 algorithm; 

Constructive neural networks; Dynamic node creation. 

1 Introduction 

Artificial neural networks have been successfully 

applied to problems in data processing, robotics, and 

numerical control of computer, decision making, and 

function approximation, classification and regression 

analysis. 

 

FeedForward Neural network is a layered neural 
network in which the neurons are organized in the 

form of layers and the neurons in one layer get the 

input from the previous layer and feed their output to 

the next layer. Among the various types of neural 

networks feedforward neural networks (FFNNs) is 

used most widely. 

 

The generalization capability and convergence time of 

supervised learning in FNNs depends on various 

factors such as choice of network architecture (number 

of hidden nodes and network topology), the choice of 
training algorithm and the choice of activation 

function of each node. This suggests the need for an 

algorithm that can find appropriate size of the network 

architecture automatically and that also learns the 

weights during training.   

 

Constructive neural networks (CoNN) consist of 

minimum architecture in which hidden nodes are 

added one at a time incrementally. 

 

Many constructive neural networks (CoNN) proposals 

for regression problems are given in [1]-[4]. Kwok and 
Yeung [1] survey the major CoNN algorithms for 

regression problems. In their proposed taxonomy that 

is based on the concept of a state-space search, group 

the algorithms into six different categories. Among 

these, the most popular for regression problems is the 

Cascade-Correlation algorithm (CCA) proposed by 

Fahlman and Lebiere [5] and next is the dynamic node 

creation (DNC) algorithm proposed by Ash [6]. The 

latter algorithm constructs a single hidden layer FNN 

automatically, whereas the former constructs cascade 
architecture during training. 

 

In each phase, CCA adds one hidden node in a 

separate hidden layer at a time and hidden node is 

connected to all inputs as well as previously trained 

hidden nodes. After the training of input weights of 

current hidden node gets completed, it is connected 

to output nodes with input weights frozen and all 

inputs of output nodes are trained again. This 

algorithm has inspired many new variants and also 

has been used in the reinforcement learning 

methods.  
 

The several variants of CCA algorithm and similar 

type of algorithms have been proposed from time to 

time in the literature. These algorithms differ from each 

other in various aspects, the connectivity patterns of 

the current hidden node i.e. cascade architecture or 

single hidden layer FNN, activation function used at 

hidden layers’ node, objective function used for 

candidate node training, the optimization method used 

for training the individual hidden node, the stopping 

criteria for candidate node training and halting 
criteria for the node addition. Lastly, they can also be 

classified on the basis of how the connection weights 

are frozen and once again trained.  
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Cascade-2 algorithm [7] was also first proposed by 

Fahlman, who proposed the idea of CCA. Cascade-2 

algorithm differs from CCA by training current 

hidden node to directly minimize the residual error 

rather than to maximize its covariance with residual 

error. Besides this, hidden node has adjustable output 

connections to all of the output nodes and all other 

things are common in both algorithms. Several 

authors have demonstrated that CCA is effective for 

classification tasks but not very successful on 

regression problems. This is because for its 
correlation term tending to drive the hidden node 

activations to their extreme values, thereby, making it 

hard for the network to produce a smoothly varying 

output [8]- [10]. 

 

Logistic activation function is widely used at hidden 

nodes in FNNs due to its nonlinear capability. In 

general, the slope parameter of sigmoidal function is 

fixed to unity prior to training and cannot be adapted 

to suit different problems during training. We can 

achieve a great nonlinear mapping capability if slope 
parameter of the sigmoidal function is adapted by the 

training data. In past many researchers had used 

adaptive slope sigmoidal function (ASSF) for fixed 

size FNNs and reported better generalization 

performance and faster learning with less number of 

hidden nodes [11]-[15]. The ASSF defined as follows: 
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where R is assumed as the set of real numbers and 
is called slope parameter. For each hidden node, the 

value of the slope parameter is updated during the 

learning process. If the slope parameter is unity, then 
this activation function is equivalent to standard log-

sigmoidal function. 

 

In this paper we propose a modified Cascade-2 

algorithm with adaptive slope sigmoidal function 

(MC2AASF). 

 

The paper is organized as follows: In Section-2, we 

propose MC2AASF. Section-3presents the 

experimental design to compare the efficiency of the 

two variants. In Section-4, the results are presented 
and discussed. In Section-5, conclusions are presented. 

2 The proposed algorithm 

This section presents the MC2AASF for designing 

cascade architecture and differs from Cascade 2 

algorithm in these four aspects: 

1) MC2AASF starts the network with one hidden 

node. Input and output nodes are not directly 
connected.  

2) MC2AASF algorithm uses only one objective 

function (squared error criterion) to train (input 

and output connection weights simultaneously) of 

each hidden node in one stage. One practical 

advantage of MC2AASF is that we do not need to 

switch between two different optimizations.  

3) MC2AASF freezes both input and output 

connection weights of the each trained hidden 

node. 

4) Stochastic gradient descent method is used for 

training the individual hidden node, thus we are 

not restricted to using batch mode.  

The proposed MC2AASF algorithm focuses on both 

architectural and functional adaptation during the 

learning. The number of input and output nodes is 
decided according to the characteristic of a given 

problem. We formulate MC2AASF for regression 

problem. Without loss of generality, we consider 

minimal architecture has Ni nodes in input layer, 

onenode in each hidden and output layer. The output 

node has a linear activation function, while the hidden 

layers’ node has ASSF defined in (1). There is a 

hidden node which is added in the current network 

and trained at a time and it does not change its 

weights (input and output) after training gets 

completed for current hidden node. The currently 
added hidden node is connected to all the input nodes 

as well as previously trained hidden nodes and 

connected to the output nodes and makes separate 

hidden layer in the form of cascade architecture just 

as in the case of Cascade-2 algorithm. During the 

training of the current hidden node, the input and 

output connection weights, slope parameter and bias 

of output node are trained by using gradient descent 

method in sequential mode, minimizing the squared 

error objective function [16].  

Let niiw
 represents weight between the n-th hidden 

node and i-thinput while kow
 represents weight 

between the k-thhidden node and output node. The 

connection weight njhiw
represents weight between 

the n-th  hidden node and j-th previously trained 

hidden node. The connections weights 0niw
 and 

0ow
 act as the biases for the n-th hidden node and 

output node, respectively. The biases of the hidden 

nodes and output node are represented using the 0-th 

auxiliary input 0x
 and 0-th auxiliary hidden node

,0O
respectively. The values of 0x

and 0O
are set to 

unity. The training pairs are represented by
 pp fx ,

;

Pp ,.......,2,1
, where P  is the number of training 

exemplars. The index 
p

is always assumed to be 
present implicitly [16]. 

If ix
 is the i-thcomponent of the input, then the total 

input for the n-thhidden node is as follows: 



 

34 

 







1

10

n

j

jnji

N

i

nin Ohiwxiwnet
i

  (2) 

The output for the n-th hidden node is as follows: 
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A cascade network, having n hidden nodes 

implements the function 
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where
 xfn 1 is the function implemented by the 

cascade architecture that had (n – 1) hidden nodes and 

where 

  0owOowxF nnn 
   (5) 

We canspecify the objective function for training the 

current n-th hidden node by (6) that is the squared 

error function on a per example basis. 
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where 1ne
is the residual error that is left from the 

previously added  hidden  nodes ( i.e. it is the desired 

output for the current n-th hidden node). 

The cascade network is trained by using gradient 

descent method applied to the minimization of the 

objective function defined in (6) on a per pattern 

basis. 

If w  is any trainable parameter of the network, then 

its weight increment with momentum term is defined 

as follows: 
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w

S
pwpw ww
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where,
 1,0w

is a constant, also known as 

momentum parameter and 
 1,0w  is a constant, 

also known as the learning rate. Let 
  xFee n  1  

be the residual error, then weight increment without 

indices defined as follows:         

w
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We can easily derive the following results: 
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We are able to write the weight update rules as for 

;....,2,1 hNn 
where Nh is the maximum number of 

hidden nodes added in cascade network architecture 

and 
Pp ,.....,2,1
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The proposed algorithm is empirically compared 

against the algorithm in which the slope parameter is 

kept constant (equal to unity) i.e that is not updated at 

all (MC2A). 

 

3 Experimental Design 

 

The following five two-dimensional regression 

functions are used to compare the learning behavior 

of MC2AASF and MC2A. These functions have been 
studied in [2], [4]: 

(a) Simple interaction function (SIF) 

   .36.06.04.0391.10 21  xxy   
     (19) 

(b) Radial function (RIF) 
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      75.05.05.0234.24
2

2

2

1  xxy

    2

2

2

1 5.05.0  xx   (20) 

(c) Harmonic function (HF) 

    4
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(d) Additive function (AF) 
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(e) Complicated interaction function (CIF) 

     2

2

1 7sin6.013sin35.19.1 21 xexey
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For each function 1,450 uniformly distributed random 

points were generated in the two-dimensional space 

1,0 21  xx
.  

The used data was normalized in the interval [-1, +1] 

and then partioned into the training set (TRS), 

validation set (VS), and testing set (TS). The first 225 

exemplars were used for TRS, the following 225 

exemplars were used for VS and the final 1,000 
exemplars for TS. 

 30 independent runs were performed for each 

regression function. For each trial, initial weights sets 

were generated in the interval [-1, +1] at random. 

After a series of experiments, we set the values of the 

parameters as constant for all regression functions. 

Hidden nodes were added up to a maximum of 15. 

Each individual hidden node was trained up to a 

maximum of 300 epochs. The learning rate w and 

momentum constant w
 for the weights were 0.1 and 

0.8, respectively. The learning rate  and 

momentum constant   for slope parameter were 
0.1 and 0.8, respectively. We started slope parameter 

with a value of unity and updated it so that it reached 

its optimal value during training. Each trained hidden 

node acquired different optimal value in the range 

   10,1.0, maxmin 
 in our simulation.  

The final performance of selected network (same 

configuration of the network, where validation MSE 

was minimum) was measured from the TS. 

 

4 Results and discussions 

The results of the 300 experiments conducted are 
presented in this section. For drawing summary, we 
considered all experiments that are executed. For 
brevity, we present summary data in Table 1. For 

comparing of the two variants of the discussed 
algorithm, the following measures are used. 

1) The minimum of the MSE (MINMSE) on test 
set achieved in all the experiments for 
regression function is in the third column. 

2) The maximum of the MSE (MAXMSE) on 
test set achieved in all the experiments for 
regression function is in the fourth column. 

3) The mean of the MSE (MMSE) on test set 
achieved in all the experiments for regression 
function is in the fifth column. 

4) The standard deviation of the MSE 
(STDMSE) on test set achieved in all the 
experiments for the regression function is in 
the sixth column. 
 

 
 

5) The minimum number of hidden nodes 
(MINHN) found by the algorithm in all the 
experiments for regression function is in the 
seventh column. 

6) The mean number of hidden nodes (MHN) 
found by algorithm in all the experiments for 
regression function is in the eighth column. 

7) The standard deviation in the number of 
hidden nodes (STDHN) found by algorithm 
in all the experiments for regression function 
is in the ninth column. 

8) Ratio of the mean of the MSE (RMMSE) in 
all the experiments of the MC2A to the 
MC2AASF is in the tenth column. 

 

The MC2AASF gives lower MSE than the variant 
MC2A for all the regression functions. In order to 

observe the significance difference in generalization 

performance, we performed a t-test. The null 

hypothesis is rejected with 95% confidence level for 

all the regression functions. It is inferred that there is a 

significant difference in MSE achieved by the two 

variants of the algorithm. The RMMSE is greater than 

one for all tasks. All these show that the generalization 

performance and convergence capability of 

MC2AASF is better than the MC2A. 

 

The common feature of the both variants is the 
freezing of previously trained nodes for the sake of 

computational efficiency and avoids the moving-target 

problem. Since the local error vector is already 

computed as a necessary part of the weight update 

equation, to update the slope parameter,it does not 

impose any significant computational burden for the 

variant MC2AASF. 
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5 Conclusion 

In this paper, we proposed a modified Cascade-2 

algorithm with adaptive slope sigmoidal function. This 

algorithm is a constructive approach of building 

cascade architecture and thus obviating the need for a 

priori guessing the network architecture.The functional 

adaptation is achieved through the adaptive slope 

parameter of sigmoidal function that prevents the 

nonlinear nodes from saturation and increases their 

learning capabilities.The algorithm determines not 

only the optimum number of hidden nodes in cascade 

architecture, as also the optimum slope parameter for 
them. From the results obtained, we may conclude that 

the MC2AASF gives better generalization 

performance and smoother learning than the variant 

MC2A. The proposed constructive training algorithm 

can be used for forecasting of electric energy demand 

for a smart city.  
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