

32

Modified Cascade-2 Algorithm with Adaptive Slope Sigmoidal
Function

Jaswinder Kaur
 1

and Sudhir Kumar Sharma
2

1 Research Scholar, Ansal University, Gurgaon, New Delhi, India
2 Professor, Department of Computer Science, IITM Janakpuri, New Delhi,India

jasukaur@rediffmail.com, sudhir_sharma99@yahoo.com

Abstract

Cascade-2 algorithm is a variant of well-known cascade-correlation algorithm that is widely investigated
constructive training algorithm for designing cascade feed forward neural networks. This paper proposes a

modified Cascade-2 algorithm with adaptive slope sigmoid function (MC2AASF). The algorithm emphasizes on

architectural adaptation and functional adaptation during learning. This algorithm is a constructive approach of

designing cascade architecture. To achieve functional adaptation, the slope of the sigmoid function is adapted

during training. One simple variant is derived from MC2AASF is where the slope parameter of sigmoid function

used at the hidden layers’ nodes is fixed to unity. Both the variants are compared to each other on five function

approximation tasks. Simulation results show that adaptive slope sigmoid function presents several advantages

over standard fixed shape sigmoid function, resulting in increasing flexibility, smoother learning, better

generalization performance and better convergence.

Keywords: Adaptive slope sigmoid function; Cascade-Correlation algorithm; Cascade-2 algorithm;

Constructive neural networks; Dynamic node creation.

1 Introduction

Artificial neural networks have been successfully

applied to problems in data processing, robotics, and

numerical control of computer, decision making, and

function approximation, classification and regression

analysis.

FeedForward Neural network is a layered neural
network in which the neurons are organized in the

form of layers and the neurons in one layer get the

input from the previous layer and feed their output to

the next layer. Among the various types of neural

networks feedforward neural networks (FFNNs) is

used most widely.

The generalization capability and convergence time of

supervised learning in FNNs depends on various

factors such as choice of network architecture (number

of hidden nodes and network topology), the choice of
training algorithm and the choice of activation

function of each node. This suggests the need for an

algorithm that can find appropriate size of the network

architecture automatically and that also learns the

weights during training.

Constructive neural networks (CoNN) consist of

minimum architecture in which hidden nodes are

added one at a time incrementally.

Many constructive neural networks (CoNN) proposals

for regression problems are given in [1]-[4]. Kwok and
Yeung [1] survey the major CoNN algorithms for

regression problems. In their proposed taxonomy that

is based on the concept of a state-space search, group

the algorithms into six different categories. Among

these, the most popular for regression problems is the

Cascade-Correlation algorithm (CCA) proposed by

Fahlman and Lebiere [5] and next is the dynamic node

creation (DNC) algorithm proposed by Ash [6]. The

latter algorithm constructs a single hidden layer FNN

automatically, whereas the former constructs cascade
architecture during training.

In each phase, CCA adds one hidden node in a

separate hidden layer at a time and hidden node is

connected to all inputs as well as previously trained

hidden nodes. After the training of input weights of

current hidden node gets completed, it is connected

to output nodes with input weights frozen and all

inputs of output nodes are trained again. This

algorithm has inspired many new variants and also

has been used in the reinforcement learning

methods.

The several variants of CCA algorithm and similar

type of algorithms have been proposed from time to

time in the literature. These algorithms differ from each

other in various aspects, the connectivity patterns of

the current hidden node i.e. cascade architecture or

single hidden layer FNN, activation function used at

hidden layers’ node, objective function used for

candidate node training, the optimization method used

for training the individual hidden node, the stopping

criteria for candidate node training and halting
criteria for the node addition. Lastly, they can also be

classified on the basis of how the connection weights

are frozen and once again trained.

33

Cascade-2 algorithm [7] was also first proposed by

Fahlman, who proposed the idea of CCA. Cascade-2

algorithm differs from CCA by training current

hidden node to directly minimize the residual error

rather than to maximize its covariance with residual

error. Besides this, hidden node has adjustable output

connections to all of the output nodes and all other

things are common in both algorithms. Several

authors have demonstrated that CCA is effective for

classification tasks but not very successful on

regression problems. This is because for its
correlation term tending to drive the hidden node

activations to their extreme values, thereby, making it

hard for the network to produce a smoothly varying

output [8]- [10].

Logistic activation function is widely used at hidden

nodes in FNNs due to its nonlinear capability. In

general, the slope parameter of sigmoidal function is

fixed to unity prior to training and cannot be adapted

to suit different problems during training. We can

achieve a great nonlinear mapping capability if slope
parameter of the sigmoidal function is adapted by the

training data. In past many researchers had used

adaptive slope sigmoidal function (ASSF) for fixed

size FNNs and reported better generalization

performance and faster learning with less number of

hidden nodes [11]-[15]. The ASSF defined as follows:

 
xe

x,g






1

1
; Rx (1)

where R is assumed as the set of real numbers and 
is called slope parameter. For each hidden node, the

value of the slope parameter is updated during the

learning process. If the slope parameter is unity, then
this activation function is equivalent to standard log-

sigmoidal function.

In this paper we propose a modified Cascade-2

algorithm with adaptive slope sigmoidal function

(MC2AASF).

The paper is organized as follows: In Section-2, we

propose MC2AASF. Section-3presents the

experimental design to compare the efficiency of the

two variants. In Section-4, the results are presented
and discussed. In Section-5, conclusions are presented.

2 The proposed algorithm

This section presents the MC2AASF for designing

cascade architecture and differs from Cascade 2

algorithm in these four aspects:

1) MC2AASF starts the network with one hidden

node. Input and output nodes are not directly
connected.

2) MC2AASF algorithm uses only one objective

function (squared error criterion) to train (input

and output connection weights simultaneously) of

each hidden node in one stage. One practical

advantage of MC2AASF is that we do not need to

switch between two different optimizations.

3) MC2AASF freezes both input and output

connection weights of the each trained hidden

node.

4) Stochastic gradient descent method is used for

training the individual hidden node, thus we are

not restricted to using batch mode.

The proposed MC2AASF algorithm focuses on both

architectural and functional adaptation during the

learning. The number of input and output nodes is
decided according to the characteristic of a given

problem. We formulate MC2AASF for regression

problem. Without loss of generality, we consider

minimal architecture has Ni nodes in input layer,

onenode in each hidden and output layer. The output

node has a linear activation function, while the hidden

layers’ node has ASSF defined in (1). There is a

hidden node which is added in the current network

and trained at a time and it does not change its

weights (input and output) after training gets

completed for current hidden node. The currently
added hidden node is connected to all the input nodes

as well as previously trained hidden nodes and

connected to the output nodes and makes separate

hidden layer in the form of cascade architecture just

as in the case of Cascade-2 algorithm. During the

training of the current hidden node, the input and

output connection weights, slope parameter and bias

of output node are trained by using gradient descent

method in sequential mode, minimizing the squared

error objective function [16].

Let niiw
 represents weight between the n-th hidden

node and i-thinput while kow
 represents weight

between the k-thhidden node and output node. The

connection weight njhiw
represents weight between

the n-th hidden node and j-th previously trained

hidden node. The connections weights 0niw
 and

0ow
 act as the biases for the n-th hidden node and

output node, respectively. The biases of the hidden

nodes and output node are represented using the 0-th

auxiliary input 0x
 and 0-th auxiliary hidden node

,0O
respectively. The values of 0x

and 0O
are set to

unity. The training pairs are represented by
 pp fx ,

;

Pp ,.......,2,1
, where P is the number of training

exemplars. The index
p

is always assumed to be
present implicitly [16].

If ix
 is the i-thcomponent of the input, then the total

input for the n-thhidden node is as follows:

34







1

10

n

j

jnji

N

i

nin Ohiwxiwnet
i

 (2)

The output for the n-th hidden node is as follows:

 
 










111

01
,

nnet
ne

n
netgO

n
nnn 



 (3)

A cascade network, having n hidden nodes

implements the function

     


 
n

k

nnkkn xFxfOowxf
0

1

 (4)

where
 xfn 1 is the function implemented by the

cascade architecture that had (n – 1) hidden nodes and

where

  0owOowxF nnn 
 (5)

We canspecify the objective function for training the

current n-th hidden node by (6) that is the squared

error function on a per example basis.

       2

1

2

2

1

2

1
xFxffxffS nnn  

  2

1
2

1
xFen  

 (6)

where 1ne
is the residual error that is left from the

previously added hidden nodes (i.e. it is the desired

output for the current n-th hidden node).

The cascade network is trained by using gradient

descent method applied to the minimization of the

objective function defined in (6) on a per pattern

basis.

If w is any trainable parameter of the network, then

its weight increment with momentum term is defined

as follows:

     p
w

S
pwpw ww




  1

 (8)

where,
 1,0w

is a constant, also known as

momentum parameter and
 1,0w is a constant,

also known as the learning rate. Let
  xFee n  1

be the residual error, then weight increment without

indices defined as follows:

w

F
eww ww



 

 (9)

We can easily derive the following results:

nkO
ow

F
k

k

,0; 




 (10)

ii

n

n

n

ni

Nix
net

O
ow

iw

F
,,1,0; 










 (11)

1,,1; 








njO

net

O
ow

hiw

F
j

n

n

n

nj



 (12)

 















,0;0

1;1
ˆ

n

nOO

net

O
O

nnn

n

n
n



 (13)

;
ˆ

n

n

n

n

n

n

n

n

net
O

ow
O

ow
F













 (14)

We are able to write the weight update rules as for

;....,2,1 hNn 
where Nh is the maximum number of

hidden nodes added in cascade network architecture

and
Pp ,.....,2,1

nkOeowow kwkwk ,0;  

 (15)

iinnwniwni NixOoweiwiw ,,1,0;ˆ  

 (16)

1,,2,1;ˆ  njOOowehiwhiw jnnwnjwnj 

 (17)

n

n

n

nnn net
O

owe


 

ˆ


 (18)

The proposed algorithm is empirically compared

against the algorithm in which the slope parameter is

kept constant (equal to unity) i.e that is not updated at

all (MC2A).

3 Experimental Design

The following five two-dimensional regression

functions are used to compare the learning behavior

of MC2AASF and MC2A. These functions have been
studied in [2], [4]:

(a) Simple interaction function (SIF)

   .36.06.04.0391.10 21  xxy
 (19)

(b) Radial function (RIF)

35

      75.05.05.0234.24
2

2

2

1  xxy

    2

2

2

1 5.05.0  xx (20)

(c) Harmonic function (HF)

    4

11 5.005.05.01.0659.42  xxy

      4

2

2

2

2

1 5.055.05.010  xxx (21)

(d) Additive function (AF)

     2

1

12

1 6.03sin15.13356.1 1 


xexy
x 

    2

2

5.03
9.04sin2 


xe

x  (22)

(e) Complicated interaction function (CIF)

     2

2

1 7sin6.013sin35.19.1 21 xexey
xx 


 (23)

For each function 1,450 uniformly distributed random

points were generated in the two-dimensional space

1,0 21  xx
.

The used data was normalized in the interval [-1, +1]

and then partioned into the training set (TRS),

validation set (VS), and testing set (TS). The first 225

exemplars were used for TRS, the following 225

exemplars were used for VS and the final 1,000
exemplars for TS.

 30 independent runs were performed for each

regression function. For each trial, initial weights sets

were generated in the interval [-1, +1] at random.

After a series of experiments, we set the values of the

parameters as constant for all regression functions.

Hidden nodes were added up to a maximum of 15.

Each individual hidden node was trained up to a

maximum of 300 epochs. The learning rate w and

momentum constant w
 for the weights were 0.1 and

0.8, respectively. The learning rate  and

momentum constant  for slope parameter were
0.1 and 0.8, respectively. We started slope parameter

with a value of unity and updated it so that it reached

its optimal value during training. Each trained hidden

node acquired different optimal value in the range

   10,1.0, maxmin 
 in our simulation.

The final performance of selected network (same

configuration of the network, where validation MSE

was minimum) was measured from the TS.

4 Results and discussions

The results of the 300 experiments conducted are
presented in this section. For drawing summary, we
considered all experiments that are executed. For
brevity, we present summary data in Table 1. For

comparing of the two variants of the discussed
algorithm, the following measures are used.

1) The minimum of the MSE (MINMSE) on test
set achieved in all the experiments for
regression function is in the third column.

2) The maximum of the MSE (MAXMSE) on
test set achieved in all the experiments for
regression function is in the fourth column.

3) The mean of the MSE (MMSE) on test set
achieved in all the experiments for regression
function is in the fifth column.

4) The standard deviation of the MSE
(STDMSE) on test set achieved in all the
experiments for the regression function is in
the sixth column.

5) The minimum number of hidden nodes
(MINHN) found by the algorithm in all the
experiments for regression function is in the
seventh column.

6) The mean number of hidden nodes (MHN)
found by algorithm in all the experiments for
regression function is in the eighth column.

7) The standard deviation in the number of
hidden nodes (STDHN) found by algorithm
in all the experiments for regression function
is in the ninth column.

8) Ratio of the mean of the MSE (RMMSE) in
all the experiments of the MC2A to the
MC2AASF is in the tenth column.

The MC2AASF gives lower MSE than the variant
MC2A for all the regression functions. In order to

observe the significance difference in generalization

performance, we performed a t-test. The null

hypothesis is rejected with 95% confidence level for

all the regression functions. It is inferred that there is a

significant difference in MSE achieved by the two

variants of the algorithm. The RMMSE is greater than

one for all tasks. All these show that the generalization

performance and convergence capability of

MC2AASF is better than the MC2A.

The common feature of the both variants is the
freezing of previously trained nodes for the sake of

computational efficiency and avoids the moving-target

problem. Since the local error vector is already

computed as a necessary part of the weight update

equation, to update the slope parameter,it does not

impose any significant computational burden for the

variant MC2AASF.

36

5 Conclusion

In this paper, we proposed a modified Cascade-2

algorithm with adaptive slope sigmoidal function. This

algorithm is a constructive approach of building

cascade architecture and thus obviating the need for a

priori guessing the network architecture.The functional

adaptation is achieved through the adaptive slope

parameter of sigmoidal function that prevents the

nonlinear nodes from saturation and increases their

learning capabilities.The algorithm determines not

only the optimum number of hidden nodes in cascade

architecture, as also the optimum slope parameter for
them. From the results obtained, we may conclude that

the MC2AASF gives better generalization

performance and smoother learning than the variant

MC2A. The proposed constructive training algorithm

can be used for forecasting of electric energy demand

for a smart city.

References
[1] T. Y. Kwok, D. Y. Yeung, (1997) “Constructive

Algorithms for Structure Learning in feedforward
Neural Networks for Regression Problems,”
IEEE Transactions on Neural Networks, vol. 8,
no. 3, pp 630-645.

[2] T.Y. Kwok, D.Y.Yenug, (1997) “Objective
functions for training new hidden units in
constructive neural networks,” IEEE Transactions
on Neural Networks, vol. 8, no. 5, pp 1131-1148.

[3] J. J. T. Lahnajarvi, M. I. Lehtokangas, and J. P. P.
Saarinen, (2002) “Evaluation of constructive
neural networks with cascaded architectures,”
Neurocomputing, vol. 48, pp 573-607.

[4] L. Ma and K. Khorasani, (2004) “New training
strategies for constructive neural networks with
application to regression problems,”
Neurocomputing, vol. 17, pp 589-609.

[5] S. E. Fahlman and C. Lebiere, (1990) “The
cascade correlation learning architecture,”
Advances in Neural Information Processing
System 2, D. S. Touretzky, Ed. CA: Morgan
Kaufmann, pp 524-277.

[6] T. Ash, (1989) “Dynamic node creation in
backpropagation networks,” Connection Science,
vol. 1, no. 4, pp 365-375.

[7] L. Prechelt, (1997)"Investigation of the cascor
family of learning algorithms,” Neural Networks
10 (5), pp 885-896.

[8] S. E. Fahlman and J. A. Boyan, (1994) “The
Cascade 2 Learning Architecture,” Technical
Report(forthcoming), CMU-CS-94-100, Carnegie
Mellon University

[9] M. C. Nechyba and Y. Xu, “Neural network
approach to control system identification with
variable activation functions,” IEEE International
Symposium on Intelligent Control, Columbus,
Ohio, USA (1994).

[10] J. N. Hwang, S. Shien and S. R. Lay, (1996)
“The Cascade – Correlation Learning: A
Projection Pursuit Learning Perspective,” In
IEEE Transactions on Neural Networks, vol. 7,
no. 2.

[11] T. Yamada, T. Yabuta, (1992) “Remarks on a
neural network controller which uses an auto-
tuning method for nonlinear functions,” IJCNN,
Vol. 2, pp 775-780.

[12] Z. Hu and H. Shao, (1992) “The study of neural
network adaptive control systems,” control and
Decision, vol. 7, pp 361-366.

[13] C. T. Chen and W. D. Chang, (1996), “A
feedforward neural network with function shape
autotuning,” Neural Networks, Vol. 9, issue (4),
pp 627-641.

[14] S. Xu and M. Zhang, (2001), “A novel adaptive
activation function,” In Proc. Int. JointConf.
Neural Networks, vol. 4, pp 2779-2782.

[15] P. Chandra ,Y. Singh, (2004),“An activation
function adapting training algorithm for
sigmoidal feedforward networks,”
Neurocomputing, pp 429-437.

[16] S. K. Sharma and P. Chandra.,(2010). "An
adaptive slope sigmoidal function cascading
neural networks algorithm", Emerging Trends in
Engineering and Technology (ICETET), 2010 3rd
International Conference on IEEE.

