

Role of Artificial Intelligence in the Diagnosis of Dementia in the Elderly

Anirudh Joshi K*, Sandhya P¹, Hanumanthachar Joshi²

*Dept. of EC, Indian Institute of Science, Bengaluru, India

¹Sarada Vilas College of Pharmacy, Mysuru, India

² Dept. of Computer Engineering, Vishveshwarya Technological University, Mysuru, India

Abstract

Dementia, a progressive neurodegenerative disorder affecting memory, cognition, and behaviour, poses a major global health challenge in aging populations. The complexity of early diagnosis and the subtle onset of symptoms often delay intervention. In recent years, artificial intelligence (AI) has emerged as a transformative tool for the early detection, classification, and monitoring of dementia, particularly Alzheimer's disease. AI-driven models leveraging neuroimaging, clinical data, speech analysis, and digital biomarkers are redefining diagnostic accuracy and efficiency. This review highlights the current advancements, methodologies, and challenges in the application of AI for dementia diagnosis in the elderly, and discusses its implications for clinical practice and future research.

Keywords: Artificial Intelligence, Dementia, Alzheimer's Disease

1. Introduction

Dementia affects approximately 55 million people worldwide, with nearly 10 million new cases each year, according to the World Health Organization (WHO). Among its various forms, Alzheimer's disease accounts for 60–70% of cases. As life expectancy increases, dementia prevalence is projected to triple by 2050. Traditional diagnostic approaches — including neuropsychological tests, imaging (MRI, PET), and biomarker assays — often

require specialized expertise and are limited by subjectivity, cost, and accessibility. Artificial intelligence, through machine learning (ML) and deep learning (DL), provides a promising avenue for automating diagnosis, identifying subtle disease patterns, and predicting disease progression using multimodal data [1].

2. Understanding Artificial Intelligence in Healthcare

AI encompasses computational systems capable of performing cognitive tasks such as learning, reasoning, and pattern recognition. In dementia diagnosis, AI models are trained on datasets that include medical images, cognitive test results, genomic profiles, and speech or behavioral data.

2.1 Machine Learning (ML)

ML algorithms, including support vector machines (SVM), random forests, and logistic regression, are used to classify individuals into diagnostic categories based on extracted features [2].

2.2 Deep Learning (DL)

DL techniques, particularly convolutional neural networks (CNNs) and recurrent neural networks (RNNs), learn hierarchical representations directly from raw imaging or audio data, reducing the need for manual feature engineering.

3. AI Applications in Dementia Diagnosis

3.1 Neuroimaging Analysis

Neuroimaging modalities such as MRI, CT, and PET provide critical structural and functional insights. AI algorithms analyze brain scans to detect atrophy patterns, amyloid deposition, or metabolic changes.

- **MRI-based Diagnosis:** CNN models have demonstrated high accuracy (up to 90%) in differentiating Alzheimer's patients from healthy controls by detecting subtle hippocampal atrophy and cortical thinning.
- **PET Imaging:** AI-based fusion of PET and MRI enhances sensitivity to early pathological changes.

3.2 Cognitive and Neuropsychological Data

AI tools analyze responses from cognitive tests like the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). ML models can predict cognitive decline trajectories and assist in remote screening through digital platforms [3].

3.3 Speech and Language Processing

Natural language processing (NLP) models assess linguistic markers such as word-finding difficulty, syntax simplification, and speech fluency. Early-stage dementia patients exhibit characteristic changes in spontaneous speech, which AI can detect with remarkable sensitivity using audio recordings.

3.4 Digital Biomarkers and Wearable Devices

Wearables and smartphones capture behavioral and physiological data (e.g., gait patterns, sleep cycles, or activity levels). AI algorithms analyze these patterns to detect early deviations suggestive of cognitive impairment [4].

3.5 Multi-modal Integration

Recent AI systems combine neuroimaging, genomics, cognitive testing, and lifestyle data for comprehensive diagnostic modelling. Multimodal fusion enhances diagnostic precision and supports personalized risk profiling [5].

4. Advantages of AI in Dementia Diagnosis

- **Early Detection:** AI can detect minute structural or functional brain changes years before clinical symptoms appear.
- **Improved Accuracy:** Automated systems reduce human error and inter-observer variability.
- **Cost-effectiveness:** Once developed, AI-based screening tools can be deployed at scale with minimal resource burden.
- **Remote Monitoring:** Digital and mobile health tools enable continuous monitoring of cognitive functions.
- **Decision Support:** AI assists clinicians in interpreting complex datasets and suggesting probable diagnoses [6].

5. Challenges and Limitations

Despite its potential, several barriers hinder clinical translation:

- **Data Quality and Heterogeneity:** Diverse data sources and limited standardized datasets reduce model generalizability.
- **Bias and Ethics:** Models may inherit biases from unbalanced datasets, leading to disparities across populations.

- **Interpretability:** Deep learning models often function as “black boxes,” limiting clinical trust.
- **Privacy Concerns:** Handling sensitive medical and behavioral data requires stringent cybersecurity measures.
- **Regulatory and Validation Gaps:** Few AI tools have received formal regulatory approval for routine clinical use [7,8].

6. Future Perspectives

The future of AI in dementia diagnosis lies in **explainable AI (XAI)**, which improves transparency and clinician understanding of algorithmic decisions. Integration with **electronic health records (EHRs)** and **federated learning** will enable large-scale, privacy-preserving data sharing. Furthermore, **predictive modelling** may facilitate individualized intervention planning and therapeutic response tracking. Collaboration between clinicians, data scientists, and policymakers will be crucial for developing validated, ethical, and patient-centered AI systems.

7. Conclusion

Artificial intelligence represents a paradigm shift in dementia diagnostics. By leveraging data-driven insights from neuroimaging, cognitive, and behavioural domains, AI offers the potential for earlier, more accurate, and more accessible detection of dementia in elderly populations. However, to fully realize its clinical utility, future research must address ethical, technical, and implementation challenges. With continued refinement, AI will serve as an indispensable ally in combating the global dementia burden.

References

1. Wang Y, Chen HJ, Cheng Y, Xie Y, Cheng Y, Zhao S, Jiang Y, Bai T, Huo Y, Wang K, Zhang M, Huang W, Feng G, Han Y, Shu N. Multimodal Integration of Plasma Biomarkers, MRI, and Genetic Risk to Predict Cerebral Amyloid Burden in Alzheimer's Disease. *Neuroimage*. 2025 Oct 22:121550. doi: 10.1016/j.neuroimage.2025.121550. Epub ahead of print. PMID: 41135743.
2. Ishikawa KM, Uechi M, Ahn HJ, Lim E. Screening mild cognitive impairment using aspects of personal, social, and functional lifestyle: Machine Learning Approaches. *PLoS One*. 2025 Oct 24;20(10):e0334704.
3. Fernandes S, Rosselet Amoussou J, Gomes da Rocha C, Perruchoud E, von Gunten A, Mabire C, Verloo H. Using Artificial Intelligence-Based Technologies for the Early Detection of Behavioral and Psychological Symptoms of Dementia: Scoping Review. *JMIR Aging*. 2025 Oct 21;8:e76074.
4. Alhasan MS, Alhasan AS, Milburn J, Khalil M, Almaghraby A, Alharthi O, Hamoud S, Essibayi MA, Elhassan YH, Feltrin F, Singh S, Azzam AY. FDG-PET brain glucose hypometabolism predicts Alzheimer's disease progression pathways in cognitively normal adults: A longitudinal competing risks modeling. *Metabol Open*. 2025 Sep 26;28:100400.
5. Esteva, A., Robicquet, A., Ramsundar, B. *et al.* A guide to deep learning in healthcare. *Nat Med* **25**, 24–29 (2019).
6. Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C. A

review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages. *Neuroimage*. 2017 Jul 15;155:530-548.

7. Livingston, Jonathan Huntley, Andrew Sommerlad, David Ames, Clive Ballard, Sube Banerjee, Carol Brayne, Alistair Burns, Jiska Cohen-Mansfield, Claudia Cooper, Sergi G Costafreda, Amit Dias, Nick Fox, Laura N Gitlin, Robert Howard, Helen C Kales, Mika Kivimäki, Eric B Larson, Adesola Ogunniyi, Vasiliki Orgeta, Karen Ritchie, Kenneth Rockwood, Elizabeth L Sampson, Quincy Samus, Lon S Schneider, Geir Selbæk, Linda Teri, Naaheed Mukadam. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission Gill. Vol 396 August 8, 2020, 413-446
8. Hanumanthachar Joshi, Sandhya P, Anirudh Joshi K. Machine learning in pharmacy and health care revolutionizing patient outcomes. *International Journal of Innovative Research in Technology*. 12 (1), 2025, 2719-2722