

Ethical Consideration & International Regulatory Guidelines in Animal Research in Drug Discovery

Ms. Vedika Patil¹, Ms. Gauri Phadke¹, Dr. Mrs. Nirmal Kasekar^{*}

¹Assistant Professor, Department of Pharmaceutical Chemistry, MGM School of Pharmacy, Kamothe, Navi Mumbai-410206

¹Assistant Professor, Department of Pharmaceutics, MGM School of Pharmacy, Kamothe, Navi Mumbai-410206

* Corresponding author, I/C Principal, MGMSOP, MGM School of Pharmacy, Kamothe, Navi Mumbai-410206: nirmalkasekar1978@gmail.com

Abstract:

As the vital link between laboratory science and clinical evaluation, preclinical animal research continues to be a fundamental part of contemporary drug discovery. Only in vivo investigations can accurately capture the systemic pharmacokinetics, pharmacodynamics, immunogenicity, and toxicity necessary to enable first-in-human dosing, even while early-stage medicinal chemistry, in vitro tests, and computational screening uncover and optimize lead drugs. In accordance with international guidelines like ICH M3(R2), regulatory bodies such as

the U.S. FDA, EMA, and India's CDSCO require suitable animal studies in Investigational New Drug (IND/CTA) filings. Therefore, revolutionary treatment developments in endocrinology, infectious illnesses, cancer, and vaccine development have been made possible by animal models.

Due to differences in disease biology, metabolism, and immunological responses between species, many drug candidates that show efficacy and safety in animals but fail in clinical trials are an example of the inconsistent translational predictivity of animal studies. The desire for improvement

is further fueled by operational constraints, high costs, and ethical issues. Scientific and regulatory organizations place a strong emphasis on rigorous model selection, improved study design, and incorporating the 3Rs—Replacement, Reduction, and Refinement—to address these issues. At the same time, the field of nonclinical development is changing due to new human-relevant approaches like organoids, organ-on-chip platforms, and AI-driven computational toxicology.

While critically analysing their limits and related ethical frameworks, this study emphasizes the crucial role that animals play in PK/PD evaluation, efficacy testing, and safety assessment. It delves deeper into the development of improved in vivo models, verified substitutes, and hybrid testing approaches that all work together to improve translational success. All things considered, ethical, evidence-based animal research—along with creative substitutes—remains essential for providing patients with safe and efficient medications.

Keywords: Animal research; Preclinical drug development; Pharmacokinetics and pharmacodynamics (PK/PD); Toxicology; Regulatory guidelines; 3Rs principle; Translational challenges; Alternatives to

animal testing; Humanized models; Organ-on-chip

1. Introduction

The Drug Development Process Involves, Target identification, hit/lead optimization, preclinical evaluation, and human clinical testing, all this steps. Through medicinal chemistry and in vitro screening, early discovery researchers find molecular hits and refine them into lead compounds. Promising leads then advance to preclinical studies that characterize pharmacokinetics (PK), pharmacodynamics (PD), efficacy in disease models, and safety/toxicity before first-in-human dosing. Therefore, preclinical testing serves as the crucial link between bench science and clinical trials and establishes whether a candidate should proceed to expensive human studies [1].

Because they offer integrated, whole-organism information that cell-based assays and in-silico methods are yet unable to fully capture, animal models play a crucial role in the preclinical stage. Systemic ADME (absorption, distribution, metabolism, excretion), target engagement across tissues, complex pharmacodynamic responses, organ-level toxicities, immune reactions, and off-target effects under

physiological conditions—all essential elements of a safety and efficacy package for an investigational new drug can all be evaluated using *in vivo* models. Because of these qualities, animals are essential for many kinds of research, including the dispersion of antibodies and biologics, the immunogenicity of vaccines, the testing of surgical instruments, and the assessment of complicated disease biology (e.g., cancer, cardiovascular disease, neurodegeneration) [1, 2].

Nonclinical (including animal) data remain at the centre of safety evaluation prior to human exposure in regulatory regimes across the globe. While organizations like the U.S. Food and Drug Administration (FDA), the European Medicines Agency (EMA), and national regulators demand appropriate toxicology, pharmacology, and PK data as part of IND/CTA dossiers, international guidelines like ICH M3(R2) specify the kinds and timing of nonclinical safety studies typically expected to support human clinical trials. Local guidelines for dossier preparation, ethical monitoring, and research conduct are added to these international criteria by country regulators (such as India's CDSCO). The involvement of animal research in the risk-benefit analysis of early human trials is both

required and standardized by these regulatory standards.

However, animal models' translational fidelity, or their capacity to forecast human outcomes, varies and is domain-specific. Positive animal outcomes have not always translated into clinical efficacy or adequately predicted human toxicity, resulting in late-stage failures or unanticipated adverse events in humans, according to systematic assessments and narrative reviews. Interspecies variations in metabolism, immunological function, disease pathophysiology, genetic background, and experimental design constraints (e.g., small group sizes, lack of blinding/randomization) are some of the reasons for translational failure. In order to increase translational predictivity, these constraints have led to recommendations for better model selection, stricter experimental standards, and the complementing application of human-relevant techniques [1, 3].

It is appropriate to reconsider the role of animal research in preclinical drug discovery in light of this dual reality: essential scientific value but inadequate translation. In addition to outlining pertinent regulatory expectations, this review summarizes the use of animal

studies throughout the preclinical pipeline (PK/PD, toxicology, efficacy models), assesses the strengths and well-documented limitations in translational performance, and surveys advancements (refined models, humanized animals, organ-on-chip, *in silico* methods) and best practices that can increase the likelihood that nonclinical results will predict clinical success.

2. Role of Animal Models in Preclinical Research

A. Pharmacokinetics and Pharmacodynamics (PK/PD) studies

Pharmacokinetics (PK) and pharmacodynamics (PD) are critical components of preclinical evaluation because they define exposure-response connections that guide dose selection and scheduling in human trials. Animal models allow for comprehensive ADME characterisation (absorption, distribution, metabolism, and excretion), identification of main metabolic pathways, and calculation of bioavailability and clearance under physiological settings that *in vitro* systems cannot fully replicate. PK/PD investigations in one or more species inform first-in-human dose by giving important parameters (e.g., AUC, C_{max},

half-life) and pharmacologically-based scaling (allometric or model-based) for predicting human exposure. For biologics and complicated modalities, animal PK/PD data are critical to discover target-mediated drug disposition and immunogenicity, which affect exposure and response, and to support therapeutic drug-monitoring methods in later development.

When evaluating safety margins and clinical starting dosages, regulatory reviewers also rely on thorough preclinical PK/PD packages. However, to reduce species-related biases and increase predictivity for humans, careful species selection and translational modelling (physiologically-based PK, mechanism-based PD) are needed [4, 5].

B. Efficacy evaluation

In preclinical drug research, the primary goal of illness models is usually to evaluate *in vivo* efficacy. Simple pharmacologic challenge tests and intricate disease-relevant systems like genetically modified mice (GEM), cell-line and syngeneic xenografts, patient-derived xenografts (PDX), spontaneous tumours in companion animals, and large-animal disease models are examples of models. Compared to cell-line xenografts, PDX models have gained

popularity in oncology because they better preserve the histology, clonal heterogeneity, and genetic characteristics of donor tumours, enhancing phenotype-based drug testing and biomarker identification. Chemically or genetically induced rat models (such as streptozotocin or high-fat diet models for diabetes) are still essential for assessing glucose-lowering effectiveness and molecular endpoints in metabolic and endocrine disorders. The choice of disease model must be consistent with the drug's mode of action; immuno-oncology medicines, for example, need humanized or immunocompetent immunological models to capture immune involvement. Researchers must recognize model limitations (over-simplified pathology, differences in the tumour microenvironment, or non-human stromal interactions) and supplement animal results with orthogonal approaches (in vitro organoids, co-clinical trials, and multi-omics) to strengthen translational inference, even though efficacy in well-designed animal models provides crucial proof-of-concept and supports go/no-go decisions [6, 7].

C. Toxicology assessments

Before human exposure, toxicology testing on animals determines the safety profile

and defines the target organs of toxicity. Single-dose (acute) studies, repeat-dose (subacute and chronic) studies, genotoxicity, safety-pharmacology (cardiac, respiratory, and central nervous system), and specialty evaluations like reproductive, developmental (DART/EFD), and carcinogenicity studies where necessary are all included in standard preclinical toxicology. In order to support clinical trials and marketing applications, regulatory guidelines (such as ICH M3(R2) and the updated ICH S5(R3) for reproductive toxicity) specify species selection, study durations, and endpoints; unless otherwise justified, repeat-dose toxicology and DART assessment usually use one rodent and one non-rodent species [5, 6]. Animal toxicology provides no-observed-adverse-effect-levels (NOAELs) for margin-of-safety estimates, identifies dose-limiting organ toxicity, and directs clinical monitoring strategies. However, the field is changing: in vitro assays, AOP frameworks, IVIVE (in vitro-to-in vivo extrapolation), and new-approach methodologies (NAMs) are increasingly being used to reduce animal use while improving mechanistic understanding of toxicity pathways, according to the "Toxicity Testing in the 21st Century" initiative and subsequent reviews. Careful

study design, suitable species selection, and open reporting of procedures and pathologies are essential for predictive value so that regulators and medical professionals can understand animal results in a way that is applicable to humans [5, 7].

D. Immunogenicity & Safety Pharmacology

Functional and immunological hazards that may not be evident from traditional toxicity are addressed by safety pharmacology and immunogenicity testing. Safety-pharmacology batteries use conscious telemetry or safety-pharmacology-specific assays to assess impacts on vital systems (cardiovascular, respiratory, and central nervous system). Evaluation of immunogenicity and immunotoxicity evaluates the possibility of immunosuppression, excessive immune stimulation, cytokine production, hypersensitivity, or autoimmune (particularly for biologics, gene treatments, and innovative modalities). To detect adverse immune consequences, integrated use of in vivo tests, serology (anti-drug antibodies), and mechanistic immune assays is advised by dedicated safety-immunopharmacology techniques and ICH guidelines (e.g., ICH S8, ICH S6(R1) for biotechnology products). Developers

frequently integrate non-clinical in vivo data, transgenic/humanized models, and in vitro human immune cell assays to characterize immunogenic risk since immune responses might be species-specific. Regulatory decision-making, risk-mitigation strategy selection, and safer first-in-human dosage are all supported by thorough immunogenicity assessment [8, 9].

3. Types of Animal Models

Preclinical drug development uses a broad range of animal species and model types because different models provide answers to various scientific issues. The biological question (ADME, mechanism, efficacy, toxicity), practical limitations (cost, throughput), and regulatory expectations all influence the model selection. The main model categories and their main applicability to drug discovery are outlined below.

Rodent models -mice and rats

Early preclinical research relies heavily on rodents (mice and rats) because of their small size, short generation period, well-characterized genetics, and wealth of historical data. Rats are frequently chosen for physiology, safety pharmacology, and

toxicokinetic studies due to their larger size and ease of serial sampling; mice are preferred for genetic manipulation (transgenics, knockouts, knock-ins), which enables in-depth mechanism-of-action studies. Tumour xenografts and streptozotocin diabetes models are examples of chemically induced, genetically modified, and transplantable rodent disease models used for acute/subacute toxicity evaluations as well as efficacy testing. Despite its usefulness, extrapolating exposure and safety margins to humans requires cautious interpretation due to interspecies differences in drug-metabolizing enzymes and immunological responses [1, 10].

Non-rodent models — dogs, swine, and non-human primates.

Regulatory toxicology often needs one non-rodent species (usually the dog or non-human primate) in addition to a rodent for repeat-dose toxicology because some organ systems (cardiovascular, renal, immunological, and metabolic pathways) and metabolic pathways are better represented in larger mammals. For some biologics and immunology studies where receptor homology is important, non-human primates remain the most human-like models; dogs offer practical benefits

for telemetry and serial blood sampling; and minipigs and other porcine models are being used more frequently because of their anatomical and physiological similarities to humans. Species selection needs to be supported by scientific evidence since species variations can both reveal and conceal toxicities that are important to humans [10, 11].

Transgenic and knockout models -

The detailed examination of gene activity and pharmacological targets *in vivo* is made possible by genetic engineering (knockout, knock-in, conditional alleles, and "humanized" models). Humanized mice, which express human proteins or immune components, are particularly useful for biologics, immuno-oncology, and metabolic studies where species-specific interactions determine activity or safety. Knockout mice are essential for mechanism-based pharmacology, target validation, and modelling monogenic diseases. Transgenic models can include artifacts (overexpression, developmental compensation), therefore thorough phenotypic validation is necessary even though they boost mechanistic relevance [1, 12].

Zebrafish, Drosophila and other small invertebrates -

Lower vertebrates and invertebrates provide quick and inexpensive whole-animal platforms for high-throughput phenotypic screening. Zebrafish embryos and larvae provide large-scale small-molecule screening, live organ system imaging, and high-throughput, low-cost early-stage toxicity assessment. They have demonstrated potential in cardiovascular, neurodevelopmental, and cancer studies and can preserve complicated pharmacology in a whole-organism environment. Because of its robust genetics and short life cycle for pathway discovery, modifier screens, and early lead prioritization, the fruit fly *Drosophila melanogaster* is a useful low-cost platform for target validation and phenotypic screening. It preserves a number of disease pathways as well. These models accelerate early discoveries and reduce the number of animal experiments required [13, 14].

***Caenorhabditis elegans* -aging, neurobiology and genetic screens.**

The nematode *C. elegans* is highly valued for research on fundamental genetics, neurodegeneration, and aging because to its short lifespan, fully mapped nervous

system, and ease of high-throughput genetic and chemical screening. Worm models are frequently employed for initial phenotypic screening and mechanistic research before mammalian validation, and they have been crucial in uncovering conserved longevity pathways and genetic modifiers of protein-aggregation illnesses. *C. elegans* is a useful tool for finding common molecular pathways and early toxicity signals, despite the limited extrapolation to human physiology [15, 16].

4. Ethical Considerations

The foundation of modern animal research is ethical monitoring, which supports preclinical drug discovery's scientific credibility as well as humane practices. The Prevention of Cruelty to Animals Act (1960) established the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) in India, which offers institutional animal ethics committees (IAECs) and animal facilities comprehensive operational guidelines and statutory regulations. In order to protect animal welfare while guaranteeing that experiments are supported by science, CPCSEA mandates IAEC assessment of all protocols,

registration of animal houses, and standards for housing, veterinary care, staff training, and documentation. In a similar vein, governmental frameworks in other countries (such as the EU Directive 2010/63/EU) impose legal requirements on researchers and institutions to exhibit ethical review and proper care for experimental animals.

The Animal Welfare Act (AWA), its implementing regulations (USDA/APHIS), and Public Health Service (PHS) policy in the United States impose minimum standards of care, mandate Institutional Animal Care and Use Committees (IACUCs), and require institutions to provide justification for animal use and welfare provisions in funded research. In addition to conducting routine facility inspections and reviewing scientific justification, experimental design, humane endpoints, and euthanasia criteria, institutional oversight bodies (IAECs/IACUCs) have duties that protect animals and enhance data reliability by guaranteeing proper study conduct and reporting [17].

the basis for studying animals. When scientifically possible, replacement encourages the employment of non-animal techniques (in vitro systems, organoids, in

silico models, microdosing); Reduction encourages the use of the fewest animals necessary to address the study topic through rigorous design and suitable statistics; In order to reduce pain, suffering, and discomfort, refinement focuses on husbandry and procedural modifications (analgesia, better handling, humane outcomes). In order to make animal usage morally justifiable and methodologically sound, contemporary reporting standards (ARRIVE) and checklists (Gold-Standard Publication Checklist) seek to incorporate the 3Rs into design, conduct, and reporting. In addition to addressing moral obligations, applying the 3Rs improves translational value and lessens experimental bias [18–20].

At the institutional level, practical implementation takes place through staff training, protocol monitoring, IAEC/IACUC review, and veterinarian supervision. Furthermore, national and international reviews of alternatives and trends (such as the work summarized in Alternatives to Laboratory Animals) show that there is active progress toward validated New Approach Methodologies (NAMs), but they also emphasize that complete replacement is frequently not yet possible for complex systemic safety or

efficacy questions. As a result, ethical frameworks continue to prioritize reduction and refinement in addition to the development of alternatives. The ethical framework that supports humane, repeatable, and socially acceptable preclinical animal research is composed of institutional review, regulatory requirements, and the 3Rs [21].

5. Alternatives to Animal Testing

The development of novel non-animal research techniques has accelerated due to growing ethical concerns and scientific constraints related to animal testing [22,23]. By utilizing artificial intelligence and human-relevant biological systems, these alternatives seek to decrease reliance on animals while increasing the translational accuracy of preclinical research [24].

5.1 *In vitro* Organoids and Stem-Cell Based Platforms

Human induced pluripotent stem cells (iPSCs) and source tissues are used to create organoids, which are three-dimensional constructs that replicate the architecture, cellular heterogeneity, and

functional responses of genuine organs [25]. Organoids of the liver, brain, intestines, and lungs are being used more often to evaluate drug metabolism, neurotoxicity, and infectious disease pathways. Organoids allow for more predictable pharmacodynamic responses than conventional 2D cultures, but they still lack systemic interactions that affect drug toxicity *in vivo*, such as vascular, immunological, and hormonal control [26].

5.2 Micro physiological Systems: Organ-on-Chip

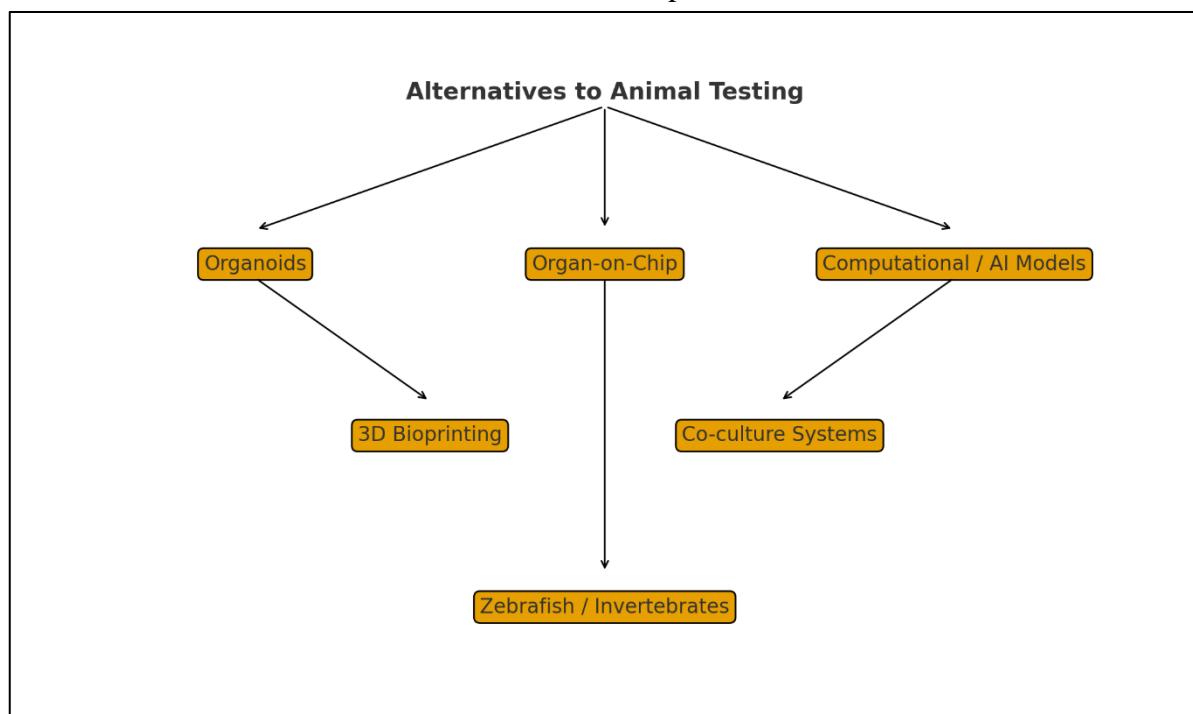
Human cells are integrated into microfluidic channels in organ-on-a-chip (OoC) models to simulate dynamic flow, mechanical stimuli, and organ-level functions. Electrophysiology and gas exchange have been modelled using heart-on-chip and lung-on-chip systems, respectively [27]. To investigate drug-induced organ interactions and adverse outcome pathways, multi-organ systems connect liver, heart, and kidney chips. As part of preclinical decision-making frameworks, regulatory organizations including the US FDA have started validation projects that support OoC platforms [23]. Scalability and standards issues prevent them from being widely used, despite their high human significance.

5.3 Computational and AI-Driven Toxicology

Artificial intelligence developments have improved in silico drug screening and decreased the need for early animal testing. By connecting physicochemical characteristics with established toxicological profiles, quantitative structure–activity relationship (QSAR) models forecast toxicity [28]. Without in vivo data, physiologically based pharmacokinetic (PBPK) modelling predicts human exposure, absorption, and clearance. To more precisely predict toxicity pathways, machine learning frameworks include multi-omics and historical safety datasets [29]. However, widespread acceptance is hampered by inadequately maintained datasets and a lack of regulatory uniformity [30].

5.4 Advanced Cell-Based Engineering: Co-culture Systems & 3D Bioprinting

Co-culture models facilitate the interaction of many human cell types, allowing for the study of tumour microenvironment dynamics and immune-mediated toxicity. Long-term drug exposure studies can benefit from the spatial positioning of cells, biomaterials, and vasculature-mimicking networks made possible by three-dimensional bioprinting. Although these methods improve physiological relevance, they necessitate expensive instrumentation and tuning [31, 32].


Throughput, human predictive value, and mechanical comprehension are all greatly enhanced by alternative models. However, there is currently no single method that can replicate whole-body complexity, particularly in research on immunological responses, chronic toxicity, and reproductive safety [33]. Therefore, the most viable short-term route to ethical, trustworthy preclinical research is through integrated testing methodologies that combine in vitro, in silico, and minimal animal validation.

Approach	Advantages	Limitations
Organoids	Human-relevant biology	Lack immune/vascular elements
Organ-on-Chip	Simulates physiology & flow	Expensive & complex
Computational/AI Models	Rapid & ethical screening	Requires validation datasets
Zebrafish/Invertebrates	High-throughput & low cost	Differences vs humans

3D Bioprinting	Complex tissue structures	High cost & optimization needed
----------------	---------------------------	---------------------------------

Table 1: Key alternative methods to animal testing with advantages and limitations.

made possible by animal research, which has allowed experimental concepts to be developed into safe and efficient treatments [34]. The following case studies show how preclinical validation, mechanistic comprehension, and successful human

Figure 1: Overview of advanced non-animal alternative approaches currently transforming preclinical drug discovery.

6. Case Studies

Some of the most significant medical advances of the last century have been

translation were made possible by animal experiments.

6.1 Discovery of Insulin

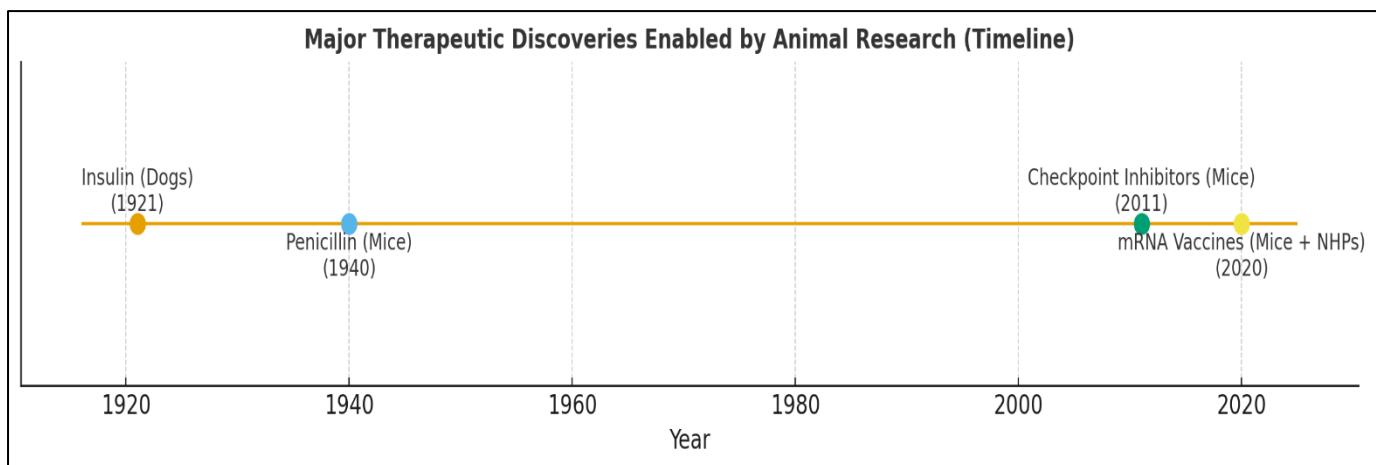
Banting and Best's 1921–1922 discovery of insulin was made feasible by canine tests in which pancreatic duct ligation demonstrated the ability of pancreatic extracts to regulate blood glucose levels.

Insulin therapy for diabetes mellitus was made possible by this groundbreaking research, which also clarified the endocrine function of the pancreas [34]. Its therapeutic potential was validated before human studies by the repeatability of outcomes in rabbits and other species.

6.2 Development of Penicillin

Penicillin's exceptional antibacterial action was demonstrated in early research on mice and rabbits, which changed the course of treating infectious diseases. Researchers were able to ascertain dosage, toxicity, and pharmacokinetics using animal models, which resulted in quick clinical adoption during World War II. Penicillin's safety and therapeutic efficacy could not have been accurately predicted without these initial in vivo validations [23].

6.3 Cancer Immunotherapy: Checkpoint Inhibitors


Using mouse tumour models, the idea of immunological checkpoints like CTLA-4 and PD-1 was clarified. Blocking these inhibitory pathways unleashed T-cell-mediated tumour destruction, which is the foundation of contemporary immunotherapy, according to experiments conducted in genetically modified and syngeneic mouse systems [28]. Oncology

was revolutionized when these discoveries were applied to people, leading to groundbreaking treatments for lung, kidney, and melanoma cancers.

6.4 mRNA Vaccine Platforms

The importance of mice and non-human primates in preclinical vaccine research was brought to light by the SARS-CoV-2 epidemic. Before human trials started, preclinical testing of mRNA-based vaccination candidates (such as mRNA-1273) verified immunogenicity, neutralizing antibody production, and lack of significant side effects. Accelerated regulatory approval and worldwide deployment in record timeframes were made possible by these investigations [32].

All of these instances show how crucial animal research is to the advancement of biomedicine. Carefully justified animal experimentation is still necessary to bridge the gap between laboratory discovery and safe, effective human medicines, even while new options continue to progress.

Figure 2: Timeline showing landmark therapeutic discoveries that were enabled by essential animal research, including insulin (dogs), penicillin (mice), immune checkpoint inhibitors (mice), and mRNA vaccines (mice and non-human primates).

7. Challenges & Limitations

Animal research confronts a number of operational, ethical, and scientific limitations that affect its translational reliability in preclinical drug development, despite its significant contributions to biomedical innovation [35]. The main issue is that animal models are not very good at predicting some human diseases. Due to physiological and immunological differences between humans and rodents, medication efficacy in clinical trials is not

consistently reproducible. Over 90% of therapeutic candidates that demonstrate safety and effectiveness in animal trials are thought to fail in human trials, especially in the areas of cancer, neurological diseases, and autoimmune disorders [36].

Animal suffering and invasive operations continue to be ethically problematic. Animal use must be responsible and supported by science, according to international regulatory frameworks like the 3Rs Principle: Replacement, Reduction, and Refinement. Non-human primates are particularly subject to ethical examination because of their sophisticated social behaviour and cognitive abilities.

Animal research is also expensive and takes a long time. Early-stage research is greatly delayed by the need for specialized housing, veterinary supervision, and stringent legal compliance for large mammalian models [37]. Additionally, poor reproducibility and inconsistent findings

among laboratories are caused by species differences, biases in experimental design, and variations in husbandry settings.

Furthermore, there are no reliable animal counterparts for some human-specific illnesses as idiopathic tumours, Alzheimer's disease, and autism spectrum disorders. This limits the finding of mechanisms by producing models that mimic symptoms but not the actual underlying illness [38]. Conventional species are not appropriate for safety assessment because advanced biological therapies (such as gene therapies and monoclonal antibodies) may interact with human-only targets.

The limits of animal research highlight the need for more predictive, moral, and economical model systems, even though it is still necessary to guarantee safety and systemic understanding prior to human trials. A more reliable route to successful drug development is provided by combining animal data with in vitro, in silico, and human-based platforms [39].

8. Future Prospects

Preclinical drug development is moving in the direction of a more comprehensive, ethically sound, and human-relevant strategy. Animal research will continue to

be vital even though alternative technologies are developing quickly, especially in fields where systemic physiology and long-term safety evaluation are essential.

The creation of humanized animal models, which add human cells, immunological components, or genetic features to improve predictive validity, is a significant accomplishment. In the fields of immuno-oncology, infectious illnesses, and regenerative medicine, where species-specific pathways significantly impact therapy outcomes, these models are especially revolutionary. Animals may be able to more closely mimic human illness pathways as CRISPR-based engineering advances.

The new benchmark for preclinical pipeline decision-making is the integration of in vitro, in silico, and in vivo data. Compounds with a greater likelihood of clinical success can be prioritized, redundancy can be eliminated, and animal research design can be guided by sophisticated computational models and machine learning algorithms. The pharmaceutical industry's objectives of cutting expenses and attrition rates are in line with this change. The FDA, EMA, and CPCSEA are among

the regulatory bodies that are gradually supporting 3Rs-driven frameworks to guarantee that animal studies are only authorized in cases when there are no practical alternatives. Initiatives to validate micro physiological systems (organ-on-a-chip) and develop standards for hybrid testing techniques are under progress.

Additionally, whereas higher mammalian models might only be used for advanced safety validation and biologics evaluation, non-mammalian vertebrate and small-scale models will support early discovery phases.

Instead of completely doing away with animal models, the future will involve using animals in a more intelligent, ethical, and selective manner, bolstered by technological advancements that increase human translational accuracy and decrease animal stress.

9. Conclusion

Preclinical drug development still heavily relies on animal research because it offers comprehensive whole-organism insights into pharmacokinetics, pharmacodynamics, effectiveness, and safety that *in vitro* or *in silico* approaches are yet unable to fully mimic. Many of the most significant

medical advances to date have been made possible by rigorous animal research, which is still essential to regulatory decision-making for first-in-human clinical trials. However, the necessity for continuous advancements in model design and interpretation is highlighted by variations in translational predictivity, ethical issues, expense, and scientific constraints. The 3Rs—Replacement, Reduction, and Refinement—are examples of regulatory systems that guarantee the justification, humane treatment, and scientific optimization of animal use.

Humanized animal models, organoids, organ-on-a-chip platforms, and computational toxicology are examples of innovations that are changing the nonclinical landscape, improving mechanistic relevance, and lowering reliance on animals. In order to improve translational accuracy, boost clinical success rates, and expedite the delivery of safe and effective therapies, the future of drug development depends on a balanced, integrated approach that combines cutting-edge human-relevant technologies with ethically conducted animal studies. A more compassionate and predictive preclinical pipeline will continue to be shaped by

responsible evolution of animal research rather than its removal.

Journal of Antimicrobial Chemotherapy 78:1337–1343

10. References

1. Mukherjee P, Roy S, Ghosh D, Nandi SK (2022) Role of animal models in biomedical research: a review. *Lab Anim Res* 38
2. Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, et al (2023) The Importance of Animal Models in Biomedical Research: Current Insights and Applications. *Animals* 13
3. Van Norman GA (2019) Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is it Time to Rethink Our Current Approach? *JACC Basic Transl Sci* 4:845–854. <https://doi.org/10.1016/j.jacbts.2019.10.008>
4. Moore JN, Poon L, Pahwa S, et al (2023) Animal pharmacokinetics/pharmacodynamics (PK/PD) infection models for clinical development of antibacterial drugs: lessons from selected cases.
5. Wijnsma KL, ter Heine R, Moes DJAR, et al (2019) Pharmacology, Pharmacokinetics and Pharmacodynamics of Eculizumab, and Possibilities for an Individualized Approach to Eculizumab. *Clin Pharmacokinet* 58:859–874
6. Liu Y, Wu W, Cai C, et al (2023) Patient-derived xenograft models in cancer therapy: technologies and applications. *Signal Transduct Target Ther* 8
7. Abdolahi S, Ghazvinian Z, Muhammadnejad S, et al (2022) Patient-derived xenograft (PDX) models, applications and challenges in cancer research. *J Transl Med* 20
8. (2020) INTERNATIONAL COUNCIL FOR HARMONISATION OF TECHNICAL REQUIREMENTS FOR PHARMACEUTICALS FOR HUMAN USE ICH HARMONISED GUIDELINE DETECTION OF REPRODUCTIVE AND DEVELOPMENTAL TOXICITY

FOR HUMAN
PHARMACEUTICALS S5(R3)

9. Descotes J (2012) Safety immunopharmacology: Evaluation of the adverse potential of pharmaceuticals on the immune system. *J Pharmacol Toxicol Methods* 66:79–83
10. Martignoni M, Groothuis GMM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. *Expert Opin Drug Metab Toxicol* 2:875–894
11. Namdari R, Jones K, Chuang SS, et al (2021) Species selection for nonclinical safety assessment of drug candidates: Examples of current industry practice. *Regulatory Toxicology and Pharmacology* 126:.. <https://doi.org/10.1016/j.yrtph.2021.105029>
12. Doyle A, McGarry MP, Lee NA, Lee JJ (2012) The construction of transgenic and gene knockout/knockin mouse models of human disease. *Transgenic Res* 21:327–349
13. Zebrafish
14. Pandey UB, Nichols CD (2011) Human disease models in drosophila melanogaster and the role of the fly in therapeutic drug discovery. *Pharmacol Rev* 63:411–436. <https://doi.org/10.1124/pr.110.003293>
15. Zhang S, Li F, Zhou T, et al (2020) *Caenorhabditis elegans* as a Useful Model for Studying Aging Mutations. *Front Endocrinol (Lausanne)* 11
16. Van Pelt KM, Truttmann MC (2020) *Caenorhabditis elegans* as a model system for studying aging-associated neurodegenerative diseases. *Transl Med Aging* 4:60–72. <https://doi.org/10.1016/j.tma.2020.05.001>
17. Mohan S, Huneke R (2019) The Role of IACUCs in Responsible Animal Research. *ILAR J* 60:43–49
18. Kilkenny C, Browne WJ, Cuthill IC, et al (2010) Improving bioscience research reporting: The arrive guidelines for reporting animal research. *PLoS Biol* 8:.. <https://doi.org/10.1371/journal.pbio.1000412>
19. The 3Rs then and now

20. animal wel 4 th reference

21. Doke SK, Dhawale SC (2015) Alternatives to animal testing: A review. *Saudi Pharmaceutical Journal* 23:223–229

22. Mestas J, Hughes CCW (2004) IMMUNOLOGY Of Mice and Not Men: Differences between Mouse and Human Immunology

23. Stewart AM, Nguyen M, Wong K, et al (2014) Developing zebrafish models of autism spectrum disorder (ASD). *Prog Neuropsychopharmacol Biol Psychiatry* 50:27–36

24. Crofton KM, Mundy WR (2021) External Scientific Report on the Interpretation of Data from the Developmental Neurotoxicity In Vitro Testing Assays for Use in Integrated Approaches for Testing and Assessment. EFSA Supporting Publications 18:. <https://doi.org/10.2903/sp.efsa.2021.en-6924>

25. Lucas RJ, Allen AE, Brainard GC, et al (2024) Recommendations for measuring and standardizing light for laboratory mammals to improve welfare and reproducibility in animal research. *PLoS Biol* 22:. <https://doi.org/10.1371/journal.pbio.3002535>

26. Louis-Maerten E, Milford A, Shaw DM, et al (2024) Perceptions of 3R implementation in European animal research: A systematic review, meta-analysis, and meta-synthesis of barriers and facilitators. *PLoS One* 19:. <https://doi.org/10.1371/journal.pone.0300031>

27. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. *Nat Biotechnol* 32:760–772

28. Schomberg DT, Tellez A, Meudt JJ, et al (2016) Miniature Swine for Preclinical Modeling of Complexities of Human Disease for Translational Scientific Discovery and Accelerated Development of Therapies and Medical Devices. *Toxicol Pathol* 44:299–314

29. Götz J, Ittner LM (2008) Animal models of Alzheimer's disease and frontotemporal dementia. *Nat Rev Neurosci* 9:532–544

30. Bailey J, Thew M WellBeing International WellBeing International WBI Studies

Repository WBI Studies Repository
An Analysis of the Use of Dogs in
Predicting Human Toxicology An
Analysis of the Use of Dogs in
Predicting Human Toxicology and
Drug Safety and Drug Safety
Michael Balls Fund for the
Replacement of Animals in Medical
Experiments

31. Chain EHW, Florey MB, Adelaide AD, et al PENICILLIN AS A CHEMOTHERAPEUTIC AGENT

32. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. *Cell* 161:205–214

33. Corbett KS, Flynn B, Foulds KE, et al (2020) Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. *New England Journal of Medicine* 383:1544–1555.
<https://doi.org/10.1056/nejmoa2024671>

34. Vinken M, Doktorova T, Ellinger-Ziegelbauer H, et al (2008) The carcinoGENOMICS project: Critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays. *Mutat Res Rev Mutat Res* 659:202–210

35. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: Modeling development and disease using organoid technologies. *Science* (1979) 345

36. Lieschke GJ, Currie PD (2007) Animal models of human disease: Zebrafish swim into view. *Nat Rev Genet* 8:353–367

37. Vandamme T (2014) Use of rodents as models of human diseases. *J Pharm Bioallied Sci* 6:2–9

38. Percie du Sert N, Hurst V, Ahluwalia A, et al (2020) The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research*. *Journal of Cerebral Blood Flow and Metabolism* 40:1769–1777. <https://doi.org/10.1177/0271678X20943823>

39. Hajar R (2011) Animal testing and medicine. *Heart Views* 12:42. <https://doi.org/10.4103/1995-705x.81548>