An comparative Study on Facial Character Analysis

##plugins.themes.bootstrap3.article.main##

Abstract

This work tends to present a new plan to  investigate face character expression by exploring  some common and specific data among totally different  expressions impressed by the observation that only many  facial elements are active in expression revelation. An automatic Facial Character Recognition features has been  performed in the domain of Computer Human Interaction.  Detection of facial character has be implemented with  CNN. This can be accomplished with testing the real time  images or with the given dataset that detects a range of  Five facial expressions with training and validating in  the given images.

References

A. T. a. D. A. E. a. O.-S. T. Lopes, A facial expression recognition system using convolutional networks, 2015.

. a. J. W. K. Chen, Facial recognition with PCA and machine learning methods, 2017.

G. a. B. M. a. F. I. a. C. J. a. M. J. Little wort, Analysis of machine learning methods for real-time recognition of facial expressions from video, 2004.

M. N. a. C. G. W. a. P. C. a. A. R. Dailey, EMPATH: A neural network that categorizes facial expressions, 2002.

M. a. P.-R. V. a. M. R. a. B. M. Abouelenien, Multimodal gender detection, 2017.

S. a. S. S. a. K. J. Kumar, A study on face recognition techniques with age and gender classification, 2017.

D. a. T. M. Fidaleo, “Manifold analysis of facial gestures for face recognition,” Proceedings of the 2003 ACM SIGMM workshop on Biometrics methods and applications, 2003.

S. V. a. R. A. T. a. T. V. A. a. M. T. P. a. K. K. C. a. K. S. D. Ioannou, “Emotion recognition through facial expression analysis based on a neuro fuzzy network,” Neural Networks, 2005.

M. F. a. J. B. a. M. M. a. P. M. a. S. K. Valstar, “The first facial expression recognition and analysis challenge,” Face and Gesture 2011, 2011.