OPTIMIZATION OF WORK LOAD USING MAP REDUCE FRAMEWORK: Review Study
Main Article Content
Abstract
The term Optimize is “to make perfect”. It’s means choosing the best element from some set of available alternatives. Within the past few years, organizations in diverse industries have adopted Mapreduce framework for large-scale data processing. As we know that Mapreduce has developed to new users for important new workloads have emerged which feature many small, short, and increasingly interactive jobs in addition to the large, long-running batch jobs. In this paper researchers try to focus on optimization of workload in different field such as e-commerce, media and data handling. Mapreduce workloads are driven by interactive analysis, and make heavy use of query like programming frameworks on top of Mapreduce. Mapreduce frameworks can achieve much higher performance by adapting to the characteristics of their workloads
Article Details
References
[1] Zhao S. and Medhi D. (2017) "Application-Aware Network Design for Hadoop Map Reduce Optimization Using Software Defined Networking", IEEE, pp. 1-14, DOI 10.1109/TNSM.2017.2728519.
[2] Gopal K. V. and Jackleen K. (2017) "Dynamic Map Reduce for Job Workloads through Slot Configuration Technique", International Journal of Innovative Research in Computer and Communication Engineering, pp. 2199-2203, DOI: 10.15680/IJIRCCE.2017. 0502207.
[3] Thant P. T., Powell C. and Sugiki A. (2016) "Multi Objective Hadoop Configuration Optimization using Steady State NSGA-II",
IEEE, pp. 293-298, DOI 10.1109/SCIS&ISIS.2016.160.
[4] Xu H. and Lau W. C. (2016) "Optimization for Speculative Execution in Big Data Processing Clusters", IEEE, pp. 1-17, DOI 10.1109/TPDS.2016.2564962.
[5] Xu H. and Lau W. C. (2015) "Optimization for Speculative Execution in a Map Reduce-like Cluster", IEEE, pp. 1071-1079.
[6] Kim s. y., Bottleson J., Jin J., Bindu P., Sakhare S. C. and Spisak J. S. (2015) "Power Efficient Map Reduce Workload Acceleration using IntegratedGPU", IEEE, pp. 162-169, DOI
10.1109/BigDataService.2015.12.
[7] Zhang Z., Cherkasova L. and Loo B. T. (2014) "Optimizing Cost and Performance Trade-Offs for Map Reduce Job Processing in the Cloud", IEEE, pp. 1-8.
[8] Sivaranjani V. and Jayamala R. (2014) "OPTIMIZATION OF WORKLOAD PREDICTION BASED ON MAP REDUCE FRAME WORK IN A CLOUD SYSTEM", International Journal of Research in Engineering and Technology, Vol. 3, Issue. 3, pp. 264-266.
[9] Ding D., Dong F. and Luo J. (2014) "Multi-Q: Multiple Queries Optimization based on Map Reduce in Cloud", IEEE, pp. 100-107, DOI:10.1109/CBD.2014.20.
[10]Tang S., Lee B-S. and He B. (2014) "Dynamic MR: A Dynamic Slot Allocation Optimization Framework for Map Reduce Clusters", IEEE,
Vol. 2, No.3, pp. 333-347, DOI:10.1109/TCC.2014.2329299.
[11]Hashem I. A. T. Yaqoob I. Anuar N. B. Mokhtar S. Gani A. and Khan S. U. (2013) “The rise of “big data” on cloud computing: Review and open research issues”, ELSEVIER, pp. 98-115, DOI 10.1016/j.is.2014.07.006.
[12]Gunarathne T. Zhang B. Wu T. L. and Qiu J. (2013) “Scalable parallel computing on clouds using Twister4Azure iterative Map Reduce”,
ELSEVIER, pp. 1035-1048, DOI 10.1016/j.future.2012.05.027.
[13]Li J., Qiu M., Mingb Z., Quanc G., Qin X., and Gue Z., (2012) “Online optimization for scheduling preemptable tasks on IaaS cloud systems”, ELSEVIER pp. 666-676, DOI 10.1016.
[14]Triguero I. Peralta D. Bacardit J. Garcıac S. and Herreraa F., (2015) “MRPR: A Map Reduce solution for prototype reduction in big data classification”, ELSEVIER, pp. 1-37, DOI 10.1016/j.neucom.2014.04.078.
[15]Hsua H. C. Slagter D. K. and Chung C. Y.( 2015)”Locality and loading aware virtual machine mapping techniques for optimizing
communications in Map Reduce applications”, ELSEVIER, pp. 43-54, DOI 10.1016/j.future.2015.04.006.
[16]Wang L. Taoc J. Ranjand R. Martenc H. Streit A. Chene J. and Chena D.,(2013) “G-Hadoop: Map Reduce across distributed data centers for data intensive computing”, ELSEVIER, pp. 739-750, DOI 10.1016/j.future.2012.09.001.
[17]Maheshwari N. Nanduri R. and Varma V. (2012) “Dynamic energy efficient data placement and cluster reconfiguration algorithm for Map Reduce framework”, ELSEVIER, pp. 119-127, DOI 10.1016/j.future.2011.07.001.
